42 resultados para LEACHING

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been only a few studies of potassium (K) losses from grassland systems, and little is known about their dynamics, especially in relation to nitrogen (N) management. A study was performed during the autumn and winter of 1999 and 2000 to understand the effects of N and drainage on the dynamics of K leaching on a hillslope grassland soil in southwestern England. Two N application rates were studied (0 and 280 kg N ha(-1) yr(-1)), both with and without the drainage. Treatments receiving N also received farmyard manure (FM). Higher total K losses and K concentrations in the leachates were found in the N + FM treatments (150 and 185% higher than in 0 N treatments), which were related to K additions in the FM. Drainage reduced K losses by 35% because of an increase in dry matter production and a reduction in overland and preferential flow. The pattern of change in K concentration in the leachates was associated with preferential flow at the beginning of the drainage season and with matrix flow later in winter, and was best described by a double exponential curve. Rainfall intensity and the autumn application of FM were the main determinants of K losses by leaching. The study provided new insights into the relationships between soil hydrology, rainfall, and K leaching and its implications for grassland systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of lysimeter based experiments was carried out during 2000/01 to evaluate the impact of soil type and grassland management on potassium (K) leaching. The effects of (1) four soil textures (sand, loam, loam over chalk and clay), (2) grazing and cutting (with farmyard manure application), and (3) K applied as inorganic fertilizer, dairy slurry or a mixture of both sources were tested. Total K losses in the clay soil were more than twice those in the sand soil (13 and 6 kg K ha(-1), respectively) because of the development of preferential flow in the clay soil. They were also greater in the cut treatment than in the grazed treatment (82 and 51 kg K ha(-1), respectively; P less than or equal to0.01), associated with a 63% increase of K concentration in the leachates from the former (6.7 +/- 0.28 and 4.1 +/- 0.22 mg K L-1 for cut and grazed, respectively; P less than or equal to0.01) because of the K input from the farmyard manure. The source of fertilizer did not affect total K losses or the average K concentration in the leachates (P >0.05), but it changed the pattern of these over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulses of potassium (K+) applied to columns of repacked calcium (Ca2+) saturated soil were leached with distilled water or calcium chloride (CaCl2) solutions of various concentrations at a rate of 12 mm h(-1). With increased Ca2+ concentration, the rate of movement of K+ increased, as did the concentration of K+ in the displaced pulse, which was less dispersed. The movement of K+ in calcite-amended soil leached with water was at a similar rate to that of the untreated soil leached with 1 mM CaCl2, and in soil containing gypsum, movement was similar to that leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 0.4 and 15 mM respectively the expected values for the dissolution of the two amendments. Soil containing native K+ was leached with distilled water or CaCl2 solutions. The amount of K+ leached increased as Ca2+ concentration increased, with up to 34% of the exchangeable K+ being removed in five pore volumes of 15 mM CaCl2. Soil amended with calcite and leached with water lost K+ at a rate between that for leaching the unamended soil with 1 mM CaCl2 and that with water. Soil containing gypsum and leached with water lost K+ at a similar rate to unamended soil leached with 15 mM CaCl2. The presence of Ca2+ in irrigation water and of soil minerals able to release Ca2+ are of importance in determining the amounts of K+ leached from soils. The LEACHM model predicted approximately the displacement of K+, and was more accurate with higher concentrations of displacing solution. The shortcomings of this model are its inability to account for rate-controlled processes and the assumption that K+:Ca2+ exchange during leaching can be described using a constant adsorption coefficient. As a result, the pulse is predicted to appear a little earlier and the following edge has less of a tail than chat measured. In practical agriculture, the model will be more useful in soils containing gypsum or leached with saline water than in either calcareous or non-calcareous soils leached with rainwater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing concern about soil enrichment with K+ and subsequent potential losses following long-term application of poor quality water to agricultural land. Different models are increasingly being used for predicting or analyzing water flow and chemical transport in soils and groundwater. The convective-dispersive equation (CDE) and the convective log-normal transfer function (CLT) models were fitted to the potassium (K+) leaching data. The CDE and CLT models produced equivalent goodness of fit. Simulated breakthrough curves for a range of CaCl2 concentration based on parameters of 15 mmol l(-1) CaCl2 were characterised by an early peak position associated with higher K+ concentration as the CaCl2 concentration used in leaching experiments decreased. In another method, the parameters estimated from 15 mmol l(-1) CaCl2 solution were used for all other CaCl2 concentrations, and the best value of retardation factor (R) was optimised for each data set. A better prediction was found. With decreasing CaCl2 concentration the value of R is required to be more than that measured (except for 10 mmol l(-1) CaCl2), if the estimated parameters of 15 mmol l(-1) CaCl2 are used. The two models suffer from the fact that they need to be calibrated against a data set, and some of their parameters are not measurable and cannot be determined independently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Displacement studies on leaching of potassium (K+) were conducted under unsaturated steady state flow conditions in nine undisturbed soil columns (15.5 cm in diameter and 25 cm long). Pulses of K+ applied to columns of undisturbed soil were leached with distilled water or calcium chloride (CaCl2) at a rate of 18 mm h(-1). The movement of K+ in gypsum treated soil leached with distilled water was at a similar rate to that of the untreated soil leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 15 mM, the expected values for the dissolution of the gypsum. When applied K+ was displaced with the distilled water, K+ was retained in the top 10-12.5 cm depth of soil. In the undisturbed soil cores there is possibility of preferential flow and lack of K+ sorption. The application of gypsum and CaCl2 in the reclamation of sodic soils would be expected to leach K+ from soils. It can also be concluded that the use of sources of water for irrigation which have a high Ca2+ concentration can also lead to leaching of K+ from soil. Average effluent concentration of K+ during leaching period was 30.2 and 28.6 mg l(-1) for the gypsum and CaCl2 treated soils, respectively. These concentrations are greater than the recommended guideline of the World Health Organisation (12 mg K+ l(-1)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensification of crop production in the mid-hills of Nepal has led to concerns that nitrogen loss by leaching may increase. This study estimated the amount of N leached during two years from rainfed terraces (bari-land) at three locations in Nepal. Maize or upland rice grown in the monsoon season was given either no nutrient inputs or inputs via either nitrogen fertilizer or farmyard manure. Nitrate concentration in soil solution was measured regularly with porous ceramic cup samplers and drainage estimated from a simple soil water balance. Estimated losses of nitrogen by leaching ranged from 0 to 63.5 kg N ha(-1) depending on location and the form of nitrogen applied. Losses from plots receiving no nutrient inputs were generally small (range: 0-35 kg N ha(-1)) and losses from plots where nitrogen was applied as manure (range: 2-41 kg N ha(-1)) were typically half those from plots with nitrogen applied as fertilizer. Losses during the post-monsoon crops of finger millet were small (typically <5% of total loss) although losses from the one site with blackgram were larger (about 13%). The highest concentrations of nitrate in solution were measured early in the season as the monsoon rains began and immediately following fertilizer applications. Leaching losses are likely to be minimised if manure is applied as a basal nutrient dressing followed by fertilizer nitrogen later in the season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semi-distributed, dynamic INCA-N model was used to simulate the behaviour of dissolved inorganic nitrogen (DIN) in two Finnish research catchments. Parameter sensitivity and model structural uncertainty were analysed using generalized sensitivity analysis. The Mustajoki catchment is a forested upstream catchment, while the Savijoki catchment represents intensively cultivated lowlands. In general, there were more influential parameters in Savijoki than Mustajoki. Model results were sensitive to N-transformation rates, vegetation dynamics, and soil and river hydrology. Values of the sensitive parameters were based on long-term measurements covering both warm and cold years. The highest measured DIN concentrations fell between minimum and maximum values estimated during the uncertainty analysis. The lowest measured concentrations fell outside these bounds, suggesting that some retention processes may be missing from the current model structure. The lowest concentrations occurred mainly during low flow periods; so effects on total loads were small.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic materials such as compost are often proposed as suitable materials for the remediation of contaminated brownfield sites intended for soft end-use. In addition to vitalising the soil, they are also believed to immobilise metals thereby breaking contaminant-receptor pathways and reducing the ecotoxicity of the contaminants. However, some research has demonstrated contradictory effects between composts on metal immobilisation. In the present study, four different composts and a liming product containing organic matter (LimeX70) were tested to examine both their metal retention and toxicity reduction capabilities on three different metal contaminated soils. Leaching tests, a plant growth test with Greek cress (Lepidium sativum), an earthworm (Eisenia fetida) survival and condition test and a bacterial toxicity test using Vibrio fischeri were carried out. The leaching test results showed that spent mushroom compost caused an increase in metal concentration in the leachates, while LimeX70 caused a decrease. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. Toxicity tests showed significant reduction of metal bioavailability and toxicity for Greek cress, earthworms and bacteria. The results also suggest that more research should be undertaken to understand the mechanisms involved in metal complexation using different types of organic matter, in order to optimise the use of organic materials like compost for soil remediation. Crown Copyright (C) 2007 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three gypsiferous-calcareous soils from the Al-Hassa Oasis in Saudi Arabia were examined to determine the conditions under which dissolution of gypsum could be hindered by the formation of coatings of calcite during leaching. Batch extraction with water of a sandy clay loam, a sandy clay and a sandy loam containing 40, 26 and 5% gypsum and 14, 12 and 13% calcite respectively was followed by chemical analysis of the extracts, SEM examination and XRD and EDX microprobe analysis. Extraction in closed centrifuge tubes for I h or 5 h showed that initially gypsum dissolved to give solutions near to equilibrium but then in the sandy clay loam, between one quarter and one third of the gypsum could not dissolve. In the sandy clay about one fifth of the gypsum could not dissolve with none remaining in the sandy loam. All the extracts were close to equilibrium with calcite. SEM and EDX examination showed that coatings of calcite had formed on the gypsum particles. The sandy clay loam was also extracted using an open system in which either air or air +1% CO2 was bubbled through the suspensions for 1 h with stirring. The gypsum dissolved more rapidly and all of the gypsum dissolved. Thus, where the rate of dissolution of gypsum was rapid, calcite did not manage to cover the gypsum surfaces probably because the surface was being continuously removed. Slower leaching conditions in the field are likely to be conducive to the formation of coatings and less dissolution of gypsum. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha(-1) yr(-1)) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from -5 (+N, drained) to +9 (no N and undrained) kg K ha(-1) yr(-1) and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquatic sediments often remove hydrophobic contaminants from fresh waters. The subsequent distribution and concentration of contaminants in bed sediments determines their effect on benthic organisms and the risk of re-entry into the water and/or leaching to groundwater. This study examines the transport of simazine and lindane in aquatic bed sediments with the aim of understanding the processes that determine their depth distribution. Experiments in flume channels (water flow of 10 cm s(-1)) determined the persistence of the compounds in the absence of sediment with (a) de-ionised water and (b) a solution that had been in contact with river sediment. In further experiments with river bed sediments in light and dark conditions, measurements were made of the concentration of the compounds in the overlying water and the development of bacterial/algal biofilms and bioturbation activity. At the end of the experiments, concentrations in sediments and associated pore waters were determined in sections of the sediment at 1 mm resolution down to 5 mm and then at 10 mm resolution to 50 mm depth and these distributions analysed using a sorption-diffusion-degradation model. The fine resolution in the depth profile permitted the detection of a maximum in the concentration of the compounds in the pore water near the surface, whereas concentrations in the sediment increased to a maximum at the surface itself. Experimental distribution coefficients determined from the pore water and sediment concentrations indicated a gradient with depth that was partly explained by an increase in organic matter content and specific surface area of the solids near the interface. The modelling showed that degradation of lindane within the sediment was necessary to explain the concentration profiles, with the optimum agreement between the measured and theoretical profiles obtained with differential degradation in the oxic and anoxic zones. The compounds penetrated to a depth of 40-50 rum over a period of 42 days. (C) 2004 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A soil (sandy loam) column leaching study aimed to determine the extent of mobility and co-mobility of Cu, Ni, Zn and dissolved organic matter (DOM) released from a surface-application (equivalent to 50 t ds ha(-1)) of anaerobically-digested sewage sludge. Leaching of DOM through It the soil column was found to be almost un-retarded. Decidedly similar behaviour was exhibited by Ni suggesting that it migrated as organic complexes. Whilst Cu was also found to be leached, significant retardation was evident. However, the importance of DOM in promoting the mobility of both Cu and Ni was evidenced by their lack of mobility when added to the soil column as inorganic forms. The presence of DOM did not prevent Zn from becoming completely adsorbed by the soil solid phase. In relation to WHO drinking water guidelines, only Ni concentrations showed potential environmental significance. due to the relatively poor retention of Ni by the sludge solid phase. (C) 2003 Elsevier Ltd. All rights reserved.