4 resultados para L-fuzzy logics

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paraconsistent logics are non-classical logics which allow non-trivial and consistent reasoning about inconsistent axioms. They have been pro- posed as a formal basis for handling inconsistent data, as commonly arise in human enterprises, and as methods for fuzzy reasoning, with applica- tions in Artificial Intelligence and the control of complex systems. Formalisations of paraconsistent logics usually require heroic mathe- matical efforts to provide a consistent axiomatisation of an inconsistent system. Here we use transreal arithmetic, which is known to be consis- tent, to arithmetise a paraconsistent logic. This is theoretically simple and should lead to efficient computer implementations. We introduce the metalogical principle of monotonicity which is a very simple way of making logics paraconsistent. Our logic has dialetheaic truth values which are both False and True. It allows contradictory propositions, allows variable contradictions, but blocks literal contradictions. Thus literal reasoning, in this logic, forms an on-the- y, syntactic partition of the propositions into internally consistent sets. We show how the set of all paraconsistent, possible worlds can be represented in a transreal space. During the development of our logic we discuss how other paraconsistent logics could be arithmetised in transreal arithmetic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transreal numbers provide a total semantics containing classical truth values, dialetheaic, fuzzy and gap values. A paraconsistent Sheffer Stroke generalises all classical logics to a paraconsistent form. We introduce logical spaces of all possible worlds and all propositions. We operate on a proposition, in all possible worlds, at the same time. We define logical transformations, possibility and necessity relations, in proposition space, and give a criterion to determine whether a proposition is classical. We show that proofs, based on the conditional, infer gaps only from gaps and that negative and positive infinity operate as bottom and top values.