7 resultados para L-angle

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the condensation of calf thymus DNA by amphiphilic polystyrene(m)-b-poly(l-lysine)(n) block copolymers (PSm-b- PLys(n), m, n = degree of polymerization), using small-angle X-ray scattering, polarized optical microscopy and laser scanning confocal microscopy. Microscopy studies showed that the DNA condenses in the form of fibrillar precipitates, with an irregular structure, due to electrostatic interactions between PLys and DNA. This is not modified by the presence of hydrophobic PS block. Scattering experiments show that the structure of the polyplexes corresponds to a local order of DNA rods which becomes more compact upon increasing n. It can be concluded that for DNA/ PSm-b- PLys(n) polyplexes, the balance between the PLys block length and the excess charge in the system plays an essential role in the formation of a liquid crystalline phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of hydrostatic pressure (P) on aqueous solutions and gels of the block copolymer B20E610 (E, oxyethylene; B, oxybutylene; subscripts, number of repeats), by performing simultaneous small angle neutron scattering/pressure experiments. Micellar cubic gels were studied for 9.5 and 4.5 wt% B20E610 at T = 20-80 and 35-55 degrees C, respectively, while micellar isotropic solutions where Studied for 4.5 wt% B20E610 at T > 55 degrees C. We observed that the interplanar distance d(110) (cubic unit cell parameter a = root 2d(110)) decreases while the correlation length of the Cubic order (delta) increases, upon increasing P at a fixed T for 9.5 wt% B20E610. The construction of master Curves for d(110) and delta corresponding to 9.5 wt% B20E610 proved the correlation between changes in T and P. Neither d(110) and delta nor the cubic-isotropic phase transition temperature was affected by the applied pressure for 4.5 wt% B20E610. The dramatic contrast between the pressure-induced behavior observed for 9.5 and 4.5 wt% B20E610 suggests that pressure induced effects might be more effectively transmitted through samples that present wider domains of cubic structure order (9.5 wt% compared to 4.5 wt% B20E610).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization of well-defined poly(L-lactide)-b-poly(epsilon-caprolactone) diblock copolymers, PLLA-b-PCL, was investigated by time-resolved X-ray techniques, polarized optical microscopy (POM), and differential scanning calorimetry (DSC). Two compositions were studied that contained 44 and 60 wt % poly(L-lactide), PLLA (they are referred to as (L44C5614)-C-11 and (L60C409)-C-12, respectively, with the molecular weight of each block in kg/mol as superscript). The copolymers were found to be initially miscible in the melt according to small-angle X-ray scattering measurements (SAXS). Their thermal behavior was also indicative of samples whose crystallization proceeds from a mixed melt. Sequential isothermal crystallization from the melt at 100 degreesC (for 30 min) and then at 30 degreesC (for 15 min) was measured. At 100 degreesC only the PLLA block is capable of crystallization, and its crystallization kinetics was followed by both WAXS and DSC; comparable results were obtained that indicated an instantaneous nucleation with three-dimensional superstructures (Avrami index of approximately 3). The spherulitic nature of the superstructure was confirmed by POM. When the temperature was decreased to 30 degreesC, the PCL block was able to crystallize within the PLLA negative spherulites (with an Avrami index of 2, as opposed to 3 in homo-PCL), and its crystallization rate was much slower than an equivalent homo-PCL. Time-resolved SAXS experiments in (L60C409)-C-12 revealed an initial melt mixed morphology at 165 degreesC that upon cooling transformed into a transient microphase-separated lamellar structure prior to crystallization at 100 degreesC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequential crystallization of poly(L-lactide) (PLLA) followed by poly(epsilon-caprolactone) (PCL) in double crystalline PLLA-b-PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122 degrees C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42 degrees C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42 degrees C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystalli zation of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122 degrees C and after 15 min at 42 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes the aqueous solution self-assembly of a series of polystyrene(m)-b-poly(L-lysine)n block copolymers (m = 8-10; n = 10-70). The polymers are prepared by ring-opening polymerization of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride using amine terminated polystyrene macroinitiators, followed by removal of the benzyloxycarbonyl side chain protecting groups. The critical micelle concentration of the block copolymers determined using the pyrene probe technique shows a parabolic dependence on peptide block length exhibiting a maximum at n = approximately 20 (m = 8) or n = approximately 60 (m = 10). The shape and size of the aggregates has been studied by dynamic and static light scattering, small-angle neutron scattering (SANS), and analytical ultracentrifugation (AUC). Surprisingly, Holtzer and Kratky analysis of the static light scattering results indicates the presence of nonspherical, presumably cylindrical objects independent of the poly(L-lysine)n block length. This is supported by SANS data, which can be fitted well by assuming cylindrical scattering objects. AUC analysis allows the molecular weight of the aggregates to be estimated as several million g/mol, corresponding to aggregation numbers of several 10s to 100s. These aggregation numbers agree with those that can be estimated from the length and diameter of the cylinders obtained from the scattering results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent observations with the EISCAT incoherent scatter radar have shown large rises in dayside, auroral plasma velocities (>2 km s^{−1}) over a wide range of latitudes and lasting about an hour. These are larger than the neutral thermal speed, and allow, for the first time, observations of a non-thermal plasma over a range of observing angles, revealing a clear angular dependence. The observed ion temperature anisotropy, deduced by assuming a Maxwellian line-of-sight ion velocity distribution, is at least 1.75, which exceeds the theoretical value for a bi-Maxwellian based on a realistic ion-neutral collision model. The aspect angle dependence of the signal spectra also indicates non-Maxwellian plasma.