10 resultados para L Cv Sparkle

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between shoot growth and rooting was examined in two, 'difficult-to root' amenity trees, Syringa vulgaris L. cv. Charles Joly and Corylus avellana L. cv. Aurea. A range of treatments reflecting severity of pruning was imposed on field-grown stock prior to bud break. To minimise variation due to the numbers of buds that developed under different treatments, bud number was restricted to 30 per plant. Leafy cuttings were harvested at different stages of the active growth phase of each species. With Syringa, rooting decreased with later harvests, but loss of rooting potential was delayed in cuttings collected from the most severe pruning treatment. Rooting potential was associated with the extent of post-excision shoot growth on the cutting but regression analyses indicated that this relationship could not entirely explain the loss of rooting with time, nor the effects due to pruning. Similarly, in Corylus rooting was promoted by severe pruning, but the relationship between apical growth on the cutting and rooting was weaker than in Syringa, and only at the last harvest did growth play a critical role in determining rooting. Another unusual factor of the last harvest of Corylus was a bimodal distribution of roots per cutting, with very few rooted cuttings having less than five roots. This implies that, for this harvest at least, the potential of an individual cutting to root is probably not limited by the number of potential rooting sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, particularly during seed development. Three cytosolic GS isoforms (HvGS1) were identified in barley (Hordeum vulgare L. cv Golden Promise). Quantitation of gene expression, localization and response to N supply revealed that each gene plays a non-redundant role in different tissues and during development. Localization of HvGS1_1 in vascular cells of different tissues, combined with its abundance in the stem and its response to changes in N supply, indicate that it is important in N transport and remobilization. HvGS1_1 is located on chromosome 6H at 72.54 cM, close to the marker HVM074 which is associated with a major quantitative trait locus (QTL) for grain protein content (GPC). HvGS1_1 may be a potential candidate gene to manipulate barley GPC. HvGS1_2 mRNA was localized to the leaf mesophyll cells, in the cortex and pericycle of roots, and was the dominant HvGS1 isoform in these tissues. HvGS1_2 expression increased in leaves with an increasing supply of N, suggesting its role in the primary assimilation of N. HvGS1_3 was specifically and predominantly localized in the grain, being highly expressed throughout grain development. HvGS1_3 expression increased specifically in the roots of plants grown on high NH+4, suggesting that it has a primary role in grain N assimilation and also in the protection against ammonium toxicity in roots. The expression of HvGS1 genes is directly correlated with protein and enzymatic activity, indicating that transcriptional regulation is of prime importance in the control of GS activity in barley.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poor wheat seed quality in temperate regions is often ascribed to wet production environments. We investigated the possible effect of simulated rain during seed development and maturation on seed longevity in wheat (Triticum aestivum L.) cv. Tybalt grown in the field (2008, 2009) or a polythene tunnel house (2010). To mimic rain, the seed crops were wetted from above with the equivalent of 30mm (2008, 2009) or 25mm rainfall (2010) at different stages of seed development and maturation (17 to 58 DAA, days after 50% anthesis), samples harvested serially, and subsequent air-dry seed longevity estimated. No pre-harvest sprouting occurred. Seed longevity (p50, 50% survival period in experimental hermetic storage at 40°C with c. 15% moisture content) in field-grown controls increased during seed development and maturation attaining maxima at 37 (2008) or 44 DAA (2009); it declined thereafter. Immediate effects of simulated rain at 17-58 DAA in field studies (2008, 2009) on subsequent seed longevity were negative but small, e.g. a 1-4 d delay in seed quality improvement for treatments early in development but with no damage detected at final harvests. In rainfall-protected conditions (2010), simulated rain close to harvest maturity (55-56 DAA) reduced longevity immediately and substantially, with greater damage from two sequential days of wetting than one; again, later harvests provided evidence of recovery in subsequent longevity. In the absence of pre-harvest sprouting, the potentially deleterious effects of rainfall to wheat seed crops on subsequent seed longevity may be reversible in full or in part.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipidomic analyses of milling and pearling fractions from wheat grain were carried out to determine differences in composition which could relate to the spatial distribution of lipids in the grain. Free fatty acids and triacylglycerols were major components in all fractions, but the relative contents of polar lipids varied, particularly lysophosphatidyl choline and digalactosyldiglyceride, which were enriched in flour fractions. By contrast, minor phospholipids were enriched in bran and offal fractions. The most abundant fatty acids in the analysed acyl lipids were C16:0 and C18:2 and their combinations, including C36:4 and C34:2. Phospholipids and galactolipids have been reported to have beneficial properties for bread making, while free fatty acids and triacylglycerols are considered detrimental. The subtle differences in the compositions of fractions determined in the present study could therefore underpin the production of flour fractions with optimised compositions for different end uses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments were conducted over two years to quantify the response of faba bean (Vicia faba L.) to heat stress. Potted winter faba bean plants (cv. Wizard) were exposed to temperature treatments (18/10; 22/14; 26/18; 30/22; 34/26°C day/night) for five days during floral development and anthesis. Developmental stages of all flowers were scored prior to stress, plants were grown in exclusion from insect pollinators to prevent pollen movement between flowers, and yield was harvested at an individual pod scale, enabling effects of heat stress to be investigated at a high resolution. Susceptibility to stress differed between floral stages, flowers were most affected during initial green-bud stages. Yield and pollen germination of flowers present before stress showed threshold relationships to stress, with lethal temperatures (t50) ~28°C and ~32°C, while whole plant yield showed a linear negative relationship to stress with high plasticity in yield allocation, such that yield lost at lower nodes was partially compensated at higher nodal positions. Faba bean has many beneficial attributes for sustainable modern cropping systems but these results suggest that yield will be limited by projected climate change, necessitating the development of heat tolerant cultivars, or improved resilience by other mechanisms such as earlier flowering times.