3 resultados para Kukkonen, Risto

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this article is to review the scientific literature on airflow distribution systems and ventilation effectiveness to identify and assess the most suitable room air distribution methods for various spaces. In this study, different ventilation systems are classified according to specific requirements and assessment procedures. This study shows that eight ventilation methods have been employed in the built environment for different purposes and tasks. The investigation shows that numerous studies have been carried out on ventilation effectiveness but few studies have been done regarding other aspects of air distribution. Amongst existing types of ventilation systems, the performance of each ventilation methods varies from one case to another due to different usages of the ventilation system in a room and the different assessment indices used. This review shows that the assessment of ventilation effectiveness or efficiency should be determined according to each task of the ventilation system, such as removal of heat, removal of pollutant, supply fresh air to the breathing zone or protecting the occupant from cross infection. The analysis results form a basic framework regarding the application of airflow distribution for the benefit of designers, architects, engineers, installers and building owners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Helsinki Urban Boundary-Layer Atmosphere Network (UrBAN: http://urban.fmi.fi) is a dedicated research-grade observational network where the physical processes in the atmosphere above the city are studied. Helsinki UrBAN is the most poleward intensive urban research observation network in the world and thus will allow studying some unique features such as strong seasonality. The network's key purpose is for the understanding of the physical processes in the urban boundary layer and associated fluxes of heat, momentum, moisture, and other gases. A further purpose is to secure a research-grade database, which can be used internationally to validate and develop numerical models of air quality and weather prediction. Scintillometers, a scanning Doppler lidar, ceilometers, a sodar, eddy-covariance stations, and radiometers are used. This equipment is supplemented by auxiliary measurements, which were primarily set up for general weather and/or air-quality mandatory purposes, such as vertical soundings and the operational Doppler radar network. Examples are presented as a testimony to the potential of the network for urban studies, such as (i) evidence of a stable boundary layer possibly coupled to an urban surface, (ii) the comparison of scintillometer data with sonic anemometry above an urban surface, (iii) the application of scanning lidar over a city, and (iv) combination of sodar and lidar to give a fuller range of sampling heights for boundary layer profiling.