40 resultados para Knowledge-to-action

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Academia has a critical role in developing new knowledge which construction industry practitioners need to envision, undertake and sustain successful innovation. The new knowledge produced by academia, however, often does not satisfy the needs of practitioners. This unsatisfactory state of affairs is frequently taken to be the consequence of the cultural, motivational and operational differences between the two communities. Actionable knowledge is presented as a useful concept which can fuse the expectations, contributions and outputs of academia and practitioners. Within this context, action research is argued to be an appropriate methodology to develop successful actionable knowledge. Results from an action research project are given which provide researchers and practitioners greater understanding of the key factors that shape the degree to which action research produces actionable knowledge: change focus, collaboration capabilities and systematic process. The criteria intrinsic to Mode 2 research (Gibbons et al., 1994) are demonstrated to have utility in evidencing actionable knowledge. The implication for policy is that there is a need to develop and use appropriate actionable knowledge frameworks and measures to design funding calls, and to evaluate research proposals and outputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EU Project AquaTerra generates knowledge about the river-soil-sediment-groundwater system and delivers scientific information of value for river basin management. In this article, the use and ignorance of scientific knowledge in decision making is explored by a theoretical review. We elaborate on the 'two-communities theory', which explains the problems of the policy-science interface by relating and comparing the different cultures, contexts, and languages of researchers and policy makers. Within AquaTerra, the EUPOL subproject examines the policy-science interface with the aim of achieving a good connection between the scientific output of the project and EU policies. We have found two major barriers, namely language and resources, as well as two types of relevant relationships: those between different research communities and those between researchers and policy makers. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Routine computer tasks are often difficult for older adult computer users to learn and remember. People tend to learn new tasks by relating new concepts to existing knowledge. However, even for 'basic' computer tasks there is little, if any, existing knowledge on which older adults can base their learning. This paper investigates a custom file management interface that was designed to aid discovery and learnability by providing interface objects that are familiar to the user. A study was conducted which examined the differences between older and younger computer users when undertaking routine file management tasks using the standard Windows desktop as compared with the custom interface. Results showed that older adult computer users requested help more than ten times as often as younger users when using a standard windows/mouse configuration, made more mistakes and also required significantly more confirmations than younger users. The custom interface showed improvements over standard Windows/mouse, with fewer confirmations and less help being required. Hence, there is potential for an interface that closely mimics the real world to improve computer accessibility for older adults, aiding self-discovery and learnability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A case of retrograde amnesia, PJM, elucidated the relationship between self, episodic memory and autobiographical knowledge. Results from a variety of measures including the I Am Memory Task (IAM Task), where memories are cued by self-generated self concepts, demonstrate that PJM has a coherent, continuous sense of self, despite having lost episodic memories for an 18-month period. Her use of conceptual autobiographical knowledge, in episodic tasks and to support aspects of identity, shows how autobiographical knowledge can support the self when episodic memories are inaccessible. These results are discussed with relation to current neuropsychological models of self and memory.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perception is linked to action via two routes: a direct route based on affordance information in the environment and an indirect route based on semantic knowledge about objects. The present study explored the factors modulating the recruitment of the two routes, in particular which factors affecting the selection of paired objects. In Experiment 1, we presented real objects among semantically related or unrelated distracters. Participants had to select two objects that can interact. The presence of distracters affected selection times, but not the semantic relations of the objects with the distracters. Furthermore, participants first selected the active object (e.g. teaspoon) with their right hand, followed by the passive object (e.g. mug), often with their left hand. In Experiment 2, we presented pictures of the same objects with no hand grip, congruent or incongruent hand grip. Participants had to decide whether the two objects can interact. Action decisions were faster when the presentation of the active object preceded the presentation of the passive object, and when the grip was congruent. Interestingly, participants were slower when the objects were semantically but not functionally related; this effect increased with congruently gripped objects. Our data showed that action decisions in the presence of strong affordance cues (real objects, pictures of congruently gripped objects) relied on sensory-motor representation, supporting the direct route from perception-to-action that bypasses semantic knowledge. However, in the case of weak affordance cues (pictures), semantic information interfered with action decisions, indicating that semantic knowledge impacts action decisions. The data support the dual-route account from perception-to-action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More data will be produced in the next five years than in the entire history of human kind, a digital deluge that marks the beginning of the Century of Information. Through a year-long consultation with UK researchers, a coherent strategy has been developed, which will nurture Century-of-Information Research (CIR); it crystallises the ideas developed by the e-Science Directors' Forum Strategy Working Group. This paper is an abridged version of their latest report which can be found at: http://wikis.nesc.ac.uk/escienvoy/Century_of_Information_Research_Strategy which also records the consultation process and the affiliations of the authors. This document is derived from a paper presented at the Oxford e-Research Conference 2008 and takes into account suggestions made in the ensuing panel discussion. The goals of the CIR Strategy are to facilitate the growth of UK research and innovation that is data and computationally intensive and to develop a new culture of 'digital-systems judgement' that will equip research communities, businesses, government and society as a whole, with the skills essential to compete and prosper in the Century of Information. The CIR Strategy identifies a national requirement for a balanced programme of coordination, research, infrastructure, translational investment and education to empower UK researchers, industry, government and society. The Strategy is designed to deliver an environment which meets the needs of UK researchers so that they can respond agilely to challenges, can create knowledge and skills, and can lead new kinds of research. It is a call to action for those engaged in research, those providing data and computational facilities, those governing research and those shaping education policies. The ultimate aim is to help researchers strengthen the international competitiveness of the UK research base and increase its contribution to the economy. The objectives of the Strategy are to better enable UK researchers across all disciplines to contribute world-leading fundamental research; to accelerate the translation of research into practice; and to develop improved capabilities, facilities and context for research and innovation. It envisages a culture that is better able to grasp the opportunities provided by the growing wealth of digital information. Computing has, of course, already become a fundamental tool in all research disciplines. The UK e-Science programme (2001-06)—since emulated internationally—pioneered the invention and use of new research methods, and a new wave of innovations in digital-information technologies which have enabled them. The Strategy argues that the UK must now harness and leverage its own, plus the now global, investment in digital-information technology in order to spread the benefits as widely as possible in research, education, industry and government. Implementing the Strategy would deliver the computational infrastructure and its benefits as envisaged in the Science & Innovation Investment Framework 2004-2014 (July 2004), and in the reports developing those proposals. To achieve this, the Strategy proposes the following actions: support the continuous innovation of digital-information research methods; provide easily used, pervasive and sustained e-Infrastructure for all research; enlarge the productive research community which exploits the new methods efficiently; generate capacity, propagate knowledge and develop skills via new curricula; and develop coordination mechanisms to improve the opportunities for interdisciplinary research and to make digital-infrastructure provision more cost effective. To gain the best value for money strategic coordination is required across a broad spectrum of stakeholders. A coherent strategy is essential in order to establish and sustain the UK as an international leader of well-curated national data assets and computational infrastructure, which is expertly used to shape policy, support decisions, empower researchers and to roll out the results to the wider benefit of society. The value of data as a foundation for wellbeing and a sustainable society must be appreciated; national resources must be more wisely directed to the collection, curation, discovery, widening access, analysis and exploitation of these data. Every researcher must be able to draw on skills, tools and computational resources to develop insights, test hypotheses and translate inventions into productive use, or to extract knowledge in support of governmental decision making. This foundation plus the skills developed will launch significant advances in research, in business, in professional practice and in government with many consequent benefits for UK citizens. The Strategy presented here addresses these complex and interlocking requirements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite nearly two decades of research on mirror neurons, there is still much debate about what they do. The most enduring hypothesis is that they enable ‘action understanding’. However, recent critical reviews have failed to find compelling evidence in favour of this view. Instead, these authors argue that mirror neurons are produced by associative learning and therefore that they cannot contribute to action understanding. The present opinion piece suggests that this argument is flawed. We argue that mirror neurons may both develop through associative learning and contribute to inferences about the actions of others.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iatrogenic errors and patient safety in clinical processes are an increasing concern. The quality of process information in hardcopy or electronic form can heavily influence clinical behaviour and decision making errors. Little work has been undertaken to assess the safety impact of clinical process planning documents guiding the clinical actions and decisions. This paper investigates the clinical process documents used in elective surgery and their impact on latent and active clinical errors. Eight clinicians from a large health trust underwent extensive semi- structured interviews to understand their use of clinical documents, and their perceived impact on errors and patient safety. Samples of the key types of document used were analysed. Theories of latent organisational and active errors from the literature were combined with the EDA semiotics model of behaviour and decision making to propose the EDA Error Model. This model enabled us to identify perceptual, evaluation, knowledge and action error types and approaches to reducing their causes. The EDA error model was then used to analyse sample documents and identify error sources and controls. Types of knowledge artefact structures used in the documents were identified and assessed in terms of safety impact. This approach was combined with analysis of the questionnaire findings using existing error knowledge from the literature. The results identified a number of document and knowledge artefact issues that give rise to latent and active errors and also issues concerning medical culture and teamwork together with recommendations for further work.