21 resultados para King, Charles R.
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present high time-resolution multiwavelength observations of X-ray bursts in the low-mass X-ray binary UY Vol. Strong reprocessed signals are present in the ultraviolet and optical, lagged and smeared with respect to the X-rays. The addition of far-ultraviolet coverage for one burst allows much tighter constraints on the temperature and geometry of the reprocessing region than previously possible. A blackbody reprocessing model for this burst suggests a rise in temperatures during the burst from 18,000 to 35,000 K and an emitting area comparable to that expected for the disk and/or irradiated companion star. The lags are consistent with those expected. The single-zone blackbody model cannot reproduce the ratio of optical to ultraviolet flux during the burst, however. The discrepancy seems too large to explain with deviations from a local blackbody spectrum and more likely indicates that a range of reprocessing temperatures are required. Comparable results are derived from other bursts, and in particular the lag and smearing both appear shorter when the companion star is on the near side of the disk as predicted. The burst observed by HST also yielded a spectrum of the reprocessed light. It is dominated by continuum, with a spectral shape consistent with the temperatures derived from lightcurve modeling. Taken as a whole, our observations confirm the standard paradigm of prompt reprocessing distributed across the disk and companion star, with the response dominated by a thermalized continuum rather than by emission lines.
Resumo:
We consider the small-time behavior of interfaces of zero contact angle solutions to the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce a wide variety of behavior for the free boundary point. These are supported by extensive numerical simulations. © 2007 Society for Industrial and Applied Mathematics
Resumo:
A mathematical model describing the main mechanistic processes involved in keratinocyte response to chromium and nickel has been developed and compared to experimental in vitro data. Accounting for the interactions between the metal ions and the keratinocytes, the law of mass action was used to generate ordinary differential equations which predict the time evolution and ion concentration dependency of keratinocyte viability, the amount of metal associated with the keratinocytes and the release of cytokines by the keratinocytes. Good agreement between model predictions and existing experimental data of these endpoints was observed, supporting the use of this model to explore physiochemical parameters that influence the toxicological response of keratinocytes to these two metals.
Resumo:
The influence of substituents and media polarity on the photoinducedE→Z geometrical isomerisation of the stilbene, azobenzene and N-benzylideneaniline chromophores has been compared and assessed. The efficiency of the process in all three systems is markedly dependent on the presence and characteristics of electron-donor and electron-acceptor substituents at the 4- and 4′-positions. The results are discussed in terms of relaxation of the E-excited singlet state. In the absence of a nitro substituent, relaxation to the S1 orthogonal state competes effectively with non-productive intramolecular electron transfer; in the presence of a nitro substituent, the T1 orthogonal state is formed from inter-system crossing. For systems with a 4-nitro and a 4′-electron-donor substituent, access to the triplet state is inhibited by polar solvents promoting formation of the inactive charge-transfer state from the S1 state, and no isomerisation is observed. Similar effects are observed in both solution and polymer films. Such variations in behaviour have important implications for the utilisation of the chromophores in nonlinear optical phenomena including photorefractivity.
Resumo:
We present optical and ultraviolet spectra, light curves, and Doppler tomograms of the low-mass X-ray binary EXO 0748-676. Using an extensive set of 15 emission-line tomograms, we show that, along with the usual emission from the stream and ``hot spot,'' there is extended nonaxisymmetric emission from the disk rim. Some of the emission and Hα and Hβ absorption features lend weight to the hypothesis that part of the stream overflows the disk rim and forms a two phase medium. The data are consistent with a 1.35 Msolar neutron star with a main-sequence companion and hence a mass ratio q~0.34.
Resumo:
We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.
Resumo:
We present N-body simulations of accretion discs about young stellar objects (YSOs). The simulation includes the presence of a magnetic loop structure on the central star which interacts with the particles by means of a magnetic drag force. We find that an equilibrium spin rate is achieved when the corotation radius coincides with the edge of the loop. This spin rate is consistent with observed values for TTauri stars, being an order of magnitude less than the breakup value. The material ejected from the system by the rotating loop has properties consistent with the observed molecular outflows, given the presence of a suitable containing cavity.
Resumo:
It is thought that the secondary stars in cataclysmic variables (CVs) may undergo a period of mass loss in the form of a wind during the evolution of the system (Mullan et al. 1992). This wind is thought to magnetically brake the secondary star with a time-scale ~ 10^8 yr (e.g. van Paradijs 1986). When the secondary’s spin has been brought close to synchronism with the orbit it is possible for tidal torques to lock the secondary in synchronous rotation.
Resumo:
This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth δ, radiative efficiency per unit optical depth E, fine-mode fraction of optical depth ff, and the anthropogenic fraction of the fine mode faf. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that control E, for validating the retrieval of ff, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the “A-Train,” a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers on Aqua, the Ozone Monitoring Instrument (OMI) radiometer on Aura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework—subject to improvement over time—for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice
Resumo:
A 19 cal ka BP pollen and charcoal record from Lake Shaman (44°S; 71°W, Chile) was analyzed to establish vegetation, fire and climate dynamics of the forest-steppe ecotone in Central Chilean Patagonia. Lake Shaman record indicates that the upper Ro Cisnes valley was free of ice at around 19 cal ka BP. From this date and until 14.8 cal ka BP, a grass steppe with high proportions of shrubs associated to colder and drier conditions than present developed in this area. A continuous increase of Nothofagus accompanied by a decline in the steppe shrubs and sudden dominance of paludal over aquatic plants from 11 cal ka BP was associated to effective moisture increase but still under modern values. The replacement of the cold-dry grass-shrub steppe by a similar-than-present forest-steppe ecotone suggests an increase in temperature indicating the onset of the Holocene. At the same time, moderate fire activity suggested by the charcoal record could be related to major fuel availability as consequence of Nothofagus forest expansion. Between 8 and 3 cal ka BP, the record indicates the easternmost position of the forest-steppe ecotone suggesting the highest effective moisture with the establishment of seasonality between 5 and 3 cal ka BP. From 3 cal ka BP, the record indicates a retraction of the forest-steppe ecotone accompanied by a high pollen record variability and an increased fire activity. These late changes suggest decreased effective moisture associated with a high climatic variability. At regional and extra-regional scale, climatic changes at Lake Shaman's record are mostly associated to changes (latitudinal shifts and/or strengthening/weakening) of past Southern Westerlies that were previously recorded along Patagonia from the Lateglacial to the mid-Holocene. During the Late Holocene, a regional pattern characterized by high record variability emerges throughout Central Chilean Patagonia. This variability would be related to (1) low magnitude Southern Westerlies changes probably associated to ENSO and/or SAM or (2) the complex relationships between vegetation, fire and human occupations during the last 3 cal ka.
Resumo:
For much of lowland Britain during the Holocene one important factor in determining environmental change was sea level fluctuation. A net rise of circa 20 m, within an oscillating short term picture of transgression and regression, caused significant short to medium term challenges for people exploiting those resources. During transgression phases estuarine creek systems extended landwards, and during the final transgression phase, widespread sedimentation took place, allowing for the development of saltmarshes on tidal flats. In later prehistory the exploitation of lowlands and estuarine wetlands was predominantly for fishing, waterfowling and pastoral use, and this paper explores the human ecodynamics of the intertidal zone in the Humber estuary during the Bronze Age. Results of the Humber Wetlands Project's recent estuarine survey, will be used to argue that following a marine transgression circa 1500 cal BC, the foreshore was fully exploited in terms of food procurement. Furthermore the construction of hurdle trackways allowed access across expanding tidal creek systems to be maintained. This not only shows continued use of the most productive environments, and provides evidence for selective use of woodland, but also the continued exploitation of the intertidal zone may have played a role in the evolution of social and political structures in this area during the Bronze Age.