38 resultados para Kinematic

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the “flux excess” effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the kinematic effect on these open solar flux estimates of large-scale longitudinal structure in the solar wind flow, with particular emphasis on correcting estimates made using data from near-Earth satellites. We show that scatter, but no net bias, is introduced by the kinematic “bunching effect” on sampling and that this is true for both compression and rarefaction regions. The observed flux excesses, as a function of heliocentric distance, are shown to be consistent with open solar flux estimates from solar magnetograms made using the potential field source surface method and are well explained by the kinematic effect of solar wind speed variations on the frozen-in heliospheric field. Applying this kinematic correction to the Omni-2 interplanetary data set shows that the open solar flux at solar minimum fell from an annual mean of 3.82 × 1016 Wb in 1987 to close to half that value (1.98 × 1016 Wb) in 2007, making the fall in the minimum value over the last two solar cycles considerably faster than the rise inferred from geomagnetic activity observations over four solar cycles in the first half of the 20th century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective is to develop methods that automatically generate kinematic models for the movements of biological and robotic systems. Two methods for the identification of the kinematics are presented. The first method requires the elimination of the displacement variables that cannot be measured while the second method attempts to estimate the changes in these variables. The methods were tested using a planar two-revolute-joint linkage. Results show that the model parameters obtained agree with the actual parameters to within 5%. Moreover, the methods were applied to model head and neck movements in the sagittal plane. The results indicate that these movements are well modeled by a two-revolute-joint system. A spatial three-revolute-joint model was also discussed and tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective is to generate kinematic models for the head and neck movements. The motivation comes from our study of individuals with quadriplegia and the need to design rehabilitation aiding devices such as robots and teletheses that can be controlled by head-neck movements. It is then necessary to develop mathematical models for the head and neck movements. Two identification methods have been applied to study the kinematics of head-neck movements of able-body as well as neck-injured subjects. In particular, sagittal plane movements are well modeled by a planar two-revolute-joint linkage. In fact, the motion in joint space seems to indicate that sagittal plane movements may be classified as a single DOF motion. Finally, a spatial three-revolute-joint system has been employed to model 3D head-neck movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball’s bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. Methods Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8–10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. Results We confirmed salient mu-ERD (8–13 Hz) and slightly weak beta-ERD (14–30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. Conclusions This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Empirical orthogonal function (EOF) analysis is a powerful tool for data compression and dimensionality reduction used broadly in meteorology and oceanography. Often in the literature, EOF modes are interpreted individually, independent of other modes. In fact, it can be shown that no such attribution can generally be made. This review demonstrates that in general individual EOF modes (i) will not correspond to individual dynamical modes, (ii) will not correspond to individual kinematic degrees of freedom, (iii) will not be statistically independent of other EOF modes, and (iv) will be strongly influenced by the nonlocal requirement that modes maximize variance over the entire domain. The goal of this review is not to argue against the use of EOF analysis in meteorology and oceanography; rather, it is to demonstrate the care that must be taken in the interpretation of individual modes in order to distinguish the medium from the message.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the third perihelion pass by the Ulysses spacecraft to illustrate and investigate the “flux excess” effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the potential effects of small-scale structure in the heliospheric field (giving fluctuations in the radial component on timescales smaller than 1 h) and kinematic time-of-flight effects of longitudinal structure in the solar wind flow. We show that the flux excess is explained by neither very small-scale structure (timescales < 1 h) nor by the kinematic “bunching effect” on spacecraft sampling. The observed flux excesses is, however, well explained by the kinematic effect of larger-scale (>1 day) solar wind speed variations on the frozen-in heliospheric field. We show that averaging over an interval T (that is long enough to eliminate structure originating in the heliosphere yet small enough to avoid cancelling opposite polarity radial field that originates from genuine sector structure in the coronal source field) is only an approximately valid way of allowing for these effects and does not adequately explain or account for differences between the streamer belt and the polar coronal holes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We survey observations of the radial magnetic field in the heliosphere as a function of position, sunspot number, and sunspot cycle phase. We show that most of the differences between pairs of simultaneous observations, normalized using the square of the heliocentric distance and averaged over solar rotations, are consistent with the kinematic "flux excess" effect whereby the radial component of the frozen-in heliospheric field is increased by longitudinal solar wind speed structure. In particular, the survey shows that, as expected, the flux excess effect at high latitudes is almost completely absent during sunspot minimum but is almost the same as within the streamer belt at sunspot maximum. We study the uncertainty inherent in the use of the Ulysses result that the radial field is independent of heliographic latitude in the computation of the total open solar flux: we show that after the kinematic correction for the excess flux effect has been made it causes errors that are smaller than 4.5%, with a most likely value of 2.5%. The importance of this result for understanding temporal evolution of the open solar flux is reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed VSW, the interplanetary magnetic field strength B, and the open solar flux FS. Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using VSW, FS, or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soymilks with sodium hexametaphosphate (SHMP) (0% to 1.2%) and calcium chloride (12.50, 18.75, and 25.00 mM Ca),were analyzed for total Ca, Ca ion concentration, pH, kinematic viscosity, particle diameter, and sediment after pasteurization. Higher added Ca led to significant (P <= 0.05) increases in Ca ion concentration and significant (P <= 0.05) decreases in pH. At certain levels of SHMP, higher concentrations of added Ca significantly increased (P <= 0.05) kinematic viscosity, particle diameter, and sediment. Increasing SHMP concentration reduced Ca ion concentration, particle diameter, and dry sediment content, but reduced kinematic viscosity of samples (P <= 0.05). Adding SHMP up to 0.7% influenced pH of soymilk in different ways, depending on the level of Ca addition. When the pH of Ca-fortified soymilk was adjusted to a higher level, ionic Ca decreased as pH increased. Ihere was a negative linear relationship between the logarithm of ionic Ca concentration and the adjusted pH of the soymilk. Ionic Ca appeared to be a good indicator of thermally induced sediment formation, with little sediment being produced if ionic Ca was maintained below 0.4 mM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-heat skim milk powder (SMP), reconstituted to 25% total solids, was found to have poor heat stability. This could be improved by reducing the free Ca2+ concentration to 1.14 mm, or lower, by the addition of either Amberlite IR-120 ion-exchange resin in its sodium form or tri-sodium citrate in skim milk prior to evaporation and spray drying. Reduction in Ca2+ concentration was accompanied by increases in pH, particle size, and kinematic viscosity, and by a reduction in zeta-potential and changes in colour. In-container sterilisation of the reconstituted powder increased particle size, zeta-potential, kinematic viscosity and a* and b* values. However. Ca2+ concentration, pH and whiteness decreased. This study elucidated the importance of Ca2+ concentration and pH on heat stability of low-heat SMP, suggesting that Ca2+ concentration and pH in bulk milk are useful indicators for ensuring that spray dried milk powder has good heat stability. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple cooperating robot systems may be required to take up a closely coupled configuration in order to perform a task. An example is extended baseline stereo (EBS), requiring that two robots must establish and maintain for a certain period of time a constrained kinematic relationship to each other. In this paper we report on the development of a networked robotics framework for modular, distributed robot systems that supports the creation of such configurations. The framework incorporates a query mechanism to locate modules distributed across the two robot systems. The work presented in this paper introduces special mechanisms to model the kinematic constraint and its instantiation. The EBS configuration is used as a case study and experimental implementation to demonstrate the approach.