4 resultados para K-casein
em CentAUR: Central Archive University of Reading - UK
Resumo:
Proteins from dromedary camel milk (CM) produced in Europe were separated and quantified by capillary electrophoresis (CE). CE analysis showed that camel milk lacks b-lactoglobulin and consists of high concentration of a-lactalbumin (2.01 ± 0.02 mg mL-1), lactoferrin (1.74 ± 0.06 mg mL-1) and serum albumin (0.46 ± 0.01 mg mL-1 ). Among caseins, the concentration of b-casein (12.78 ± 0.92 mg mL-1) was found the highest followed by a-casein (2.89 ± 0.29 mg mL-1) while k-casein represented only minor amount (1.67 ± 0.01 mg mL-1). These results were in agreement with sodium dodecyl sulphatepolyacrylamide gel electrophoresis patterns. Overall, CE offers a quick and reliable method for the determination of major CM proteins, which may be responsible for the many nutritional and health properties of CM.
Resumo:
The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Certain milk factors may promote the growth of a host-friendly gastrointestinal microbiota, for example, one that is predominated by bifidobacteria, a perceived healthpromoting genus. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts who are believed to have a more diverse microbiota, which is similar to that of adults. The effects of formulas supplemented with 2 such ingredients from bovine milk, a-lactalbumin (alpha-lac) and casein glycomacropeptide (GMP), on gut flora were investigated in this study. Patients and Methods: Six-week-old (4-8 wk), healthy term infants were randomised to a standard infant formula or 1 of 2 test formulae enriched in alpha-Jac with higher or lower GMP until 6 months. Faecal bacteriology was determined by the culture-independent procedure fluorescence in situ hybridisation. Results: There was a large fluctuation of bacterial counts within groups with no statistically significant differences between groups. Although all groups showed a. predominance of bifidobacteria, breast-fed infants had a small temporary increase in counts. Other bacterial levels varied in formula-fed groups, which overall showed an adult-like faecal microflora. Conclusions: It can be speculated that a prebiotic effect for alpha-lac and GMP is achieved only with low starting populations of beneficial microbiota (eg, infants not initially breast-fed.
Resumo:
The effects of increased postruminal supply of casein, corn starch, and soybean oil on plasma concentrations of the gastrointestinal hormones ghrelin and oxyntomodulin (OXM) were investigated. Four mid-lactation Holstein cows were used in a 4×4 Latin square. Treatments were continuous abomasal infusions (23h/d) for 7 d of water, soybean oil (500g/d), corn starch (1100g/d), or casein (800g/d). Jugular vein plasma was obtained every 30min for 7h on days 1 and 7. Soybean oil and casein infusion decreased preprandial plasma ghrelin concentration by approximately 20% on both d (time-by-treatment P<0.10); however, dry matter intake (DMI) was depressed only after 7 d of oil infusion. Infusion of soybean oil, corn starch, or casein did not change the plasma OXM concentration (P>0.20). The present data indicate that plasma ghrelin concentration is depressed immediately before feeding by the postruminal infusion of soybean oil and casein, but it is not affected during the postprandial period. Plasma ghrelin concentration was not altered (P>0.20), pre- or postfeeding, by increased postruminal supply of corn starch. In addition, plasma OXM concentration did not respond (P>0.20) to postruminal nutrient infusion. In conclusion, a decrease in DMI when fat is infused could be partially explained by the decrease in prefeeding plasma ghrelin concentration, but a decrease in prefeeding plasma ghrelin concentration is not always associated with a decrease in DMI, as observed for the infusion of casein. Plasma OXM concentration was not affected by postruminal infusion of macronutrients.