14 resultados para Iterative Methods

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new iterative approach called Line Adaptation for the Singular Sources Objective (LASSO) to object or shape reconstruction based on the singular sources method (or probe method) for the reconstruction of scatterers from the far-field pattern of scattered acoustic or electromagnetic waves. The scheme is based on the construction of an indicator function given by the scattered field for incident point sources in its source point from the given far-field patterns for plane waves. The indicator function is then used to drive the contraction of a surface which surrounds the unknown scatterers. A stopping criterion for those parts of the surfaces that touch the unknown scatterers is formulated. A splitting approach for the contracting surfaces is formulated, such that scatterers consisting of several separate components can be reconstructed. Convergence of the scheme is shown, and its feasibility is demonstrated using a numerical study with several examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bossel's (2001) systems-based approach for deriving comprehensive indicator sets provides one of the most holistic frameworks for developing sustainability indicators. It ensures that indicators cover all important aspects of system viability, performance, and sustainability, and recognizes that a system cannot be assessed in isolation from the systems upon which it depends and which in turn depend upon it. In this reply, we show how Bossel's approach is part of a wider convergence toward integrating participatory and reductionist approaches to measure progress toward sustainable development. However, we also show that further integration of these approaches may be able to improve the accuracy and reliability of indicators to better stimulate community learning and action. Only through active community involvement can indicators facilitate progress toward sustainable development goals. To engage communities effectively in the application of indicators, these communities must be actively involved in developing, and even in proposing, indicators. The accuracy, reliability, and sensitivity of the indicators derived from local communities can be ensured through an iterative process of empirical and community evaluation. Communities are unlikely to invest in measuring sustainability indicators unless monitoring provides immediate and clear benefits. However, in the context of goals, targets, and/or baselines, sustainability indicators can more effectively contribute to a process of development that matches local priorities and engages the interests of local people.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider conjugate-gradient like methods for solving block symmetric indefinite linear systems that arise from saddle-point problems or, in particular, regularizations thereof. Such methods require preconditioners that preserve certain sub-blocks from the original systems but allow considerable flexibility for the remaining blocks. We construct a number of families of implicit factorizations that are capable of reproducing the required sub-blocks and (some) of the remainder. These generalize known implicit factorizations for the unregularized case. Improved eigenvalue clustering is possible if additionally some of the noncrucial blocks are reproduced. Numerical experiments confirm that these implicit-factorization preconditioners can be very effective in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative approach to research is described that has been developed through a succession of significant construction management research projects. The approach follows the principles of iterative grounded theory, whereby researchers iterate between alternative theoretical frameworks and emergent empirical data. Of particular importance is an orientation toward mixing methods, thereby overcoming the existing tendency to dichotomize quantitative and qualitative approaches. The approach is positioned against the existing contested literature on grounded theory, and the possibility of engaging with empirical data in a “theory free” manner is discounted. Emphasis instead is given to the way in which researchers must be theoretically sensitive as a result of being steeped in relevant literatures. Knowledge of existing literatures therefore shapes the initial research design; but emergent empirical findings cause fresh theoretical perspectives to be mobilized. The advocated approach is further aligned with notions of knowledge coproduction and the underlying principles of contextualist research. It is this unique combination of ideas which characterizes the paper's contribution to the research methodology literature within the field of construction management. Examples are provided and consideration is given to the extent to which the emergent findings are generalizable beyond the specific context from which they are derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The weak-constraint inverse for nonlinear dynamical models is discussed and derived in terms of a probabilistic formulation. The well-known result that for Gaussian error statistics the minimum of the weak-constraint inverse is equal to the maximum-likelihood estimate is rederived. Then several methods based on ensemble statistics that can be used to find the smoother (as opposed to the filter) solution are introduced and compared to traditional methods. A strong point of the new methods is that they avoid the integration of adjoint equations, which is a complex task for real oceanographic or atmospheric applications. they also avoid iterative searches in a Hilbert space, and error estimates can be obtained without much additional computational effort. the feasibility of the new methods is illustrated in a two-layer quasigeostrophic model.