4 resultados para Irritation

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-radical copolymerization of 2-hydroxyethyl methacrylate with 2-hydroxyethyl acrylate can be successively utilized for the synthesis of water-soluble polymers and hydrogels with excellent physicochemical properties, thus showing promise for pharmaceutical and biomedical applications. In the work presented it has been demonstrated that water-soluble copolymers based on 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate exhibit lower critical solution temperature in aqueous solutions, whereas the corresponding high molecular weight homopolymers do not have this unique property. The temperature-induced transitions observed upon heating the aqueous solutions of these copolymers proceed via liquid−liquid phase separation. The hydrogels were also synthesized by copolymerizing 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate in the absence of a bifunctional cross-linker. The cross-linking of these copolymers during copolymerization is believed to be due to the presence of bifunctional admixtures or transesterification reactions. Transparency, swelling behavior, mechanical properties, and porosity of the hydrogels are dependent upon the monomer ratio in the copolymers. Hydrogel samples containing more 2-hydroxyethyl methacrylate are less transparent, have lower swelling capacity, higher elastic moduli, and pores of smaller size. The assessment of the biocompatibility of the copolymers using the slug mucosal irritation test revealed that they are also less irritant than poly(acrylic acid).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant and tyrosinase inhibitory properties of extracts of mango seed kernel (Mangifera indica L.), which is normally discarded when the fruit is processed, were studied. Extracts contained phenolic components by a high antioxidant activity, which was assessed in homogeneous solution by the 2,2-diphenyt-1-picrylhydrazyl radical and 2,2'-azinobis (3-ethylbenzothialozinesulfonic acid) radical cation-scavenging assays and in an emulsion with the ferric thiocyanate test. The extracts also possessed tyrosinase inhibitory activity. Drying conditions and extraction solvent were varied, and optimum conditions for preparation of mango seed kernel extract were found to be sun-drying with ethanol extraction at room temperature. Refluxing in acidified ethanol gave an increase in yield and the obtained extract had the highest content of total phenolics, and also was the most effective antioxidant with the highest radical-scavenging, metal-chelating and tyrosinase inhibitory activity. The extracts did not cause acute irritation of rabbit skins. Our study for the first time reveals the high total phenol content, radical-scavenging, metal-chelating and tyrosinase inhibitory activities of the extract from mango seed kernel. This extract may be suitable for use in food, cosmetic, nutraceutical and pharmaceutical applications. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Volatile anesthetics such as isoflurane and halothane have been in clinical use for many years and represent the group of drugs most commonly used to maintain general anesthesia. However, despite their widespread use, the molecular mechanisms by which these drugs exert their effects are not completely understood. Recently, a seemingly paradoxical effect of general anesthetics has been identified: the activation of peripheral nociceptors by irritant anesthetics. This mechanism may explain the hyperalgesic actions of inhaled anesthetics and their adverse effects in the airways. METHODS: To test the hypothesis that irritant inhaled anesthetics activate the excitatory ion-channel transient receptor potential (TRP)-A1 and thereby contribute to hyperalgesia and irritant airway effects, we used the measurement of intracellular calcium concentration in isolated cells in culture. For our functional experiments, we used models of isolated guinea pig bronchi to measure bronchoconstriction and withdrawal threshold to mechanical stimulation with von Frey filaments in mice. RESULTS: Irritant inhaled anesthetics activate TRPA1 expressed in human embryonic kidney cells and in nociceptive neurons. Isoflurane induces mechanical hyperalgesia in mice by a TRPA1-dependent mechanism. Isoflurane also induces TRPA1-dependent constriction of isolated bronchi. Nonirritant anesthetics do not activate TRPA1 and fail to produce hyperalgesia and bronchial constriction. CONCLUSIONS: General anesthetics induce a reversible loss of consciousness and render the patient unresponsive to painful stimuli. However, they also produce excitatory effects such as airway irritation and they contribute to postoperative pain. Activation of TRPA1 may contribute to these adverse effects, a hypothesis that remains to be tested in the clinical setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the use of Pluronic F127 and Pluronic F68 as excipients for formulating in situ gelling systems for ocular drug delivery. Thermal transitions have been studied in aqueous solutions of Pluronic F127, Pluronic F68 as well as their binary mixtures using differential scanning calorimetry, rheological measurements, and dynamic light scattering. It was established that the formation of transparent gels at physiologically relevant temperatures is observed only in the case of 20 wt % of Pluronic F127. The addition of Pluronic F68 to Pluronic F127 solutions increases the gelation temperature of binary formulation to above physiological range of temperatures. The biocompatibility evaluation of these formulations using slug mucosa irritation assay and bovine corneal erosion studies revealed that these polymers and their combinations do not cause significant irritation. In vitro drug retention study on glass surfaces and freshly excised bovine cornea showed superior performance of 20 wt % Pluronic F127 compared to other formulations. In addition, in vivo studies in rabbits demonstrated better retention performance of 20 wt % Pluronic F127 compared to Pluronic F68. These results confirmed that 20 wt % Pluronic F127 offers an attractive ocular formulation that can form a transparent gel in situ under physiological conditions with minimal irritation.