5 resultados para Investigation-action

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated, for the D-2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. K-i values for agonists were determined in competition, versus the binding of the antagonist [H-3]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (K-h) (G protein-coupled) and lower affinity (K-l) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [H-3]N-propylnorapomorphine (NPA) to provide a second estimate of K-h,. Maximal agonist effects (E-max) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[S-32] thiotriphosphate) ([S-35]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (K-l/K-h, determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative E-max, Kl/EC50) of agonists determined in [S-35]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed For a subset of compounds, however, there was a relation between K-l/K-h and E-max.. Competition-binding data versus [H-3]spiperone and [H-3]NPA for a range of inverse agonists were fitted best by a one-binding site model. K-i values for the inverse agonists tested were slightly lower in competition versus [H-3]NPA compared to [H-3]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: Carisbamate is being developed for adjuvant treatment of partial onset epilepsy. Carisbamate produces anticonvulsant effects in primary generalized, complex partial and absence-type seizure models, and exhibits neuroprotective and antiepileptogenic properties in rodent epilepsy models. Phase IIb clinical trials of carisbamate demonstrated efficacy against partial onset seizures; however, its mechanisms of action remain unknown. Here, we report the effects of carisbamate on membrane properties, evoked and spontaneous synaptic transmission and induced epileptiform discharges in layer II-III neurones in piriform cortical brain slices. Experimental approach: Effects of carisbamate were investigated in rat piriform cortical neurones by using intracellular electrophysiological recordings. Key results: Carisbamate (50–400 mmol·L-1) reversibly decreased amplitude, duration and rise-time of evoked action potentials and inhibited repetitive firing, consistent with use-dependent Na+ channel block; 150–400 mmol·L-1 carisbamate reduced neuronal input resistance, without altering membrane potential. After microelectrode intracellular Cl- loading, carisbamate depolarized cells, an effect reversed by picrotoxin. Carisbamate (100–400 mmol·L-1) also selectively depressed lateral olfactory tract-afferent evoked excitatory synaptic transmission (opposed by picrotoxin), consistent with activation of a presynaptic Cl conductance. Lidocaine (40–320 mmol·L-1) mimicked carisbamate, implying similar modes of action. Carisbamate (300–600 mmol·L-1) had no effect on spontaneous GABAA miniature inhibitory postsynaptic currents and at lower concentrations (50–200 mmol·L-1) inhibited Mg2+-free or 4-aminopyridine-induced seizure-like discharges. Conclusions and implications: Carisbamate blocked evoked action potentials use-dependently, consistent with a primary action on Na+ channels and increased Cl- conductances presynaptically and, under certain conditions, postsynaptically to selectively depress excitatory neurotransmission in piriform cortical layer Ia-afferent terminals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combinations of drugs are increasingly being used for a wide variety of diseases and conditions. A pre-clinical study may allow the investigation of the response at a large number of dose combinations. In determining the response to a drug combination, interest may lie in seeking evidence of synergism, in which the joint action is greater than the actions of the individual drugs, or of antagonism, in which it is less. Two well-known response surface models representing no interaction are Loewe additivity and Bliss independence, and Loewe or Bliss synergism or antagonism is defined relative to these. We illustrate an approach to fitting these models for the case in which the marginal single drug dose-response relationships are represented by four-parameter logistic curves with common upper and lower limits, and where the response variable is normally distributed with a common variance about the dose-response curve. When the dose-response curves are not parallel, the relative potency of the two drugs varies according to the magnitude of the desired effect and the models for Loewe additivity and synergism/antagonism cannot be explicitly expressed. We present an iterative approach to fitting these models without the assumption of parallel dose-response curves. A goodness-of-fit test based on residuals is also described. Implementation using the SAS NLIN procedure is illustrated using data from a pre-clinical study. Copyright © 2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor α (ERα) and ERβ and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells.