42 resultados para Invertebrates.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Soil invertebrate communities are likely to be highly vulnerable to low soil moisture, caused by a reduction in summer rainfall which is predicted for some regions under current climate change scenarios. However, the effects of changes in summer rainfall on soil invertebrate assemblages have rarely been tested experimentally. In this study, samples were taken in 2003 and 2004 from a long-running field experiment, to investigate the impact of 10 years of experimental summer drought and increased summer rainfall manipulations on the soil fauna of a calcareous grassland. Summer drought altered the soil invertebrate assemblage in the autumn, immediately following treatment application, but by the following spring treatment effects were no longer apparent. The two most common root herbivore species responded differently to the summer rainfall manipulations. Larvae of the dominant root-chewing species, Agriotes lineatus, were more numerous under enhanced rainfall in both the spring and autumn. In contrast, abundance of the Coccoidea Lecanopsis formicarum was unaffected by the rainfall manipulations. The responses of root herbivores to an increased incidence of summer droughts are therefore likely to vary, depending on their feeding strategy and life history. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The introduction of Registration, Evaluation and Authorisation of Chemicals (REACH), requires companies to register and risk assess all substances produced or imported in volumes of >1 tonne per year. Extrapolation methods which use existing data for estimating the effects of chemicals are attractive to industry, and comparative data are therefore increasingly in demand. Data on natural toxic chemicals could be used for extrapolation methods Such as read-across. To test this hypothesis, the toxicity of natural chemicals and their synthetic analogues were compared using standardised toxicity tests. Two chemical pairs: the napthoquinones, juglone (natural) and 1,4-naphthoquinone (synthetic); and anthraquinones, emodin (natural) and quinizarin (synthetic) were chosen, and their comparative effects on the survival and reproduction of collembolans, earthworms, enchytraeids and predatory mites were assessed. Differences in sensitivity between the species were observed with the predatory mite (Hypoaspis aculeifer) showing the least sensitivity. Within the chemical pairs, toxicity to lethal and sub-lethal endpoints was very similar for the four invertebrate species. The exception was earthworm reproduction, which showed differential sensitivity to the chemicals in both naphthoquinone and anthraquinone pairs. Differences in toxicity identified in the present study may be related to degree of exposure and/or subtle differences in the mode of toxic action for the chemicals and species tested. It may be possible to predict differences by identifying functional groups which infer increased or decreased toxicity in one or other chemical. The development of such techniques would enable the use of read-across from natural to synthetic chemicals for a wider group of compounds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Here we describe a novel, inexpensive and simple method for preserving RNA that reduces handling stress in aquatic invertebrates following ecotoxicogenomic experimentation. The application of the method is based on transcriptomic experiments conducted on Daphnia magna, but may easily be applied on a range of other aquatic organisms of a particular size with e.g. amphipod Gammarus pulex representing an upper size limit. We explain in detail how to apply this new method, named the "Cylindrical Sieve (CS) system", and highlight its advantages and disadvantages.
Resumo:
Flight at high altitude is part of a migration strategy that maximises insect population displacement. This thesis represents the first substantial analysis of insect migration and layering in Europe. Vertical-looking entomological radar has revealed specific characteristics of high-altitude flight: in particular layering (where a large proportion of the migrating insects are concentrated in a narrow altitude band). The meteorological mechanisms underpinning the formation of these layers are the focus of this thesis. Aerial netting samples and radar data revealed four distinct periods of high-altitude insect migration: dawn, daytime, dusk, and night-time. The most frequently observed nocturnal profiles during the summertime were layers. It is hypothesised that nocturnal layers initiate at a critical altitude (200–500 m above ground level) and time (20:00–22:00 hours UTC). Case study analysis, statistical analysis, and a Lagrangian trajectory model showed that nocturnal insect layers probably result from the insects’ response to meteorological conditions. Temperature was the variable most correlated with nocturnal insect layer presence and intensity because insects are poikilothermic, and temperatures experienced during high-altitude migration in temperate climates are expected to be marginal for many insects’ flight. Hierarchical effects were detected such that other variables—specifically wind speed—were only correlated with insect layer presence and intensity once temperatures were warm. The trajectory model developed comprised: (i) insect flight characteristics; (ii) turbulent winds (which cause vertical spread of the layer); and (iii) mean wind speed, which normally leads to horizontal displacements of hundreds of kilometres in a single migratory flight. This thesis has revealed that there is considerable migratory activity over the UK in the summer months, and a range of fascinating phenomena can be observed (including layers). The UK has moved from one of the least studied to perhaps the best studied environments of aerial insect migration and layering in the world.
Resumo:
Bed-sediments are a sink for many micro-organic contaminants in aquatic environments. The impact of toxic contaminants on benthic fauna often depends on their spatial distribution, and the fate of the parent compounds and their metabolites. The distribution of a synthetic pyrethroid, permethrin, a compound known to be toxic to aquatic invertebrates, was studied using river bed-sediments in lotic flume channels. trans/cis-Permethrin diagnostic ratios were used to quantify the photoisomerization of the trans isomer in water. Rates were affected by the presence of sediment particles and colloids when compared to distilled water alone. Two experiments in dark/light conditions with replicate channels were undertaken using natural sediment, previously contaminated with permethrin, to examine the effect of the growth of an algal biofilm at the sediment-water interface on diffusive fluxes of permethrin into the sediment. After 42 days, the bulk water was removed, allowing a fine sectioning of the sediment bed (i.e., every mm down to 5 mm and then 5-10 mm, then every 10 mm down to 50 mm). Permethrin was detected in all cases down to a depth of 5-10 mm, in agreement with estimates by the Millington and Quirk model, and measurements of concentrations in pore water produced a distribution coefficient (K-d) for each section, High K-d's were observed for the top layers, mainly as a result of high organic matter and specific surface area. Concentrations in the algal biofilm measured at the end of the experiment under light conditions, and increases in concentration in the top 1 mm of the sediment, demonstrated that algal/bacterial biofilm material was responsible for high K-d's at the sediment surface, and for the retardation of permethrin diffusion. This specific partition of permethrin to fine sediment particles and algae may enhance its threat to benthic invertebrates. In addition,the analysis of trans/cis-permethrin isomer ratios in sediment showed greater losses of trans-permethrin in the experiment under light conditions, which may have also resulted from enhanced biological activity at the sediment surface.
Resumo:
The present study examines the potential of Urtica dioica as an ecologically relevant species for use in ecotoxicological testing. It is prevalent in degraded ecosystems and is a food source for invertebrates. Urtica dioica grown in hydroponic solutions containing from less than 0.003 to 5.7 mg Cd/L or from 0.02 to 41.9 mg Zn/L accumulated metals resulting in leaf tissue concentrations in the range of 0.10 to 24.9 mg Cd/kg or 22.5 to 2,772.0 mg Zn/kg. No toxicological effects were apparent except at the highest concentrations tested, suggesting that this species may be an important pathway for transfer of metals to primary plant consumers. Helix aspersa and Lumbricus terrestris were fed the Cd- and Zn-rich leaves of U. dioica for six and four weeks, respectively. Cadmium and Zn body load increased with increasing metal concentration in the leaves (p < 0.001). Ratios of invertebrate metal concentration to leaf metal concentration were in the range of 1:0.03 to 1:1.4 for Cd and 1:0.2 to 1:2.8 for Zn in H. aspersa and 1:0.002 to 1:3.9 for Cd and 1:0.2 to 1:8.8 for Zn in L. terrestris. Helix aspersa Cd and Zn tissue concentrations (15.5 and 1,220.2 mg/kg, respectively) were approximately threefold those in L. terrestris when both species were fed nettle leaves with concentrations of approximately 23 mg Cd/ kg and 3,400 mg Zn/kg. Models demonstrate that L. terrestris Cd tissue concentrations (r(2) = 0.74, p < 0.001) and H. aspersa Zn tissue concentrations (r(2) = 0.69, p < 0.001) can be estimated from concentrations of Cd and Zn within the leaves of U. dioica and suggest that reasonably reproducible results can be obtained using these species for ecotoxicological testing.
Resumo:
Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.
Resumo:
Agricultural management of grassland in lowland Britain has changed fundamentally in the last 50 years, resulting in spatial and structural uniformity within the pastoral landscape. The full extent to which these changes may have reduced the suitability of grassland as foraging habitat for birds is unknown. This study investigated the mechanisms by which these changes have impacted on birds and their food supplies. We quantified field use by birds in summer and winter in two grassland areas of lowland England (Devon and Buckinghamshire) over 3 years, relating bird occurrence to the management, sward structure and seed and invertebrate food resources of individual fields. Management intensity was defined in terms of annual nitrogen input. There was no consistent effect of management intensity on total seed head production, although those of grasses generally increased with inputs while forbs were rare throughout. Relationships between management intensity and abundance of soil and epigeal invertebrates were complex. Soil beetle larvae were consistently lower in abundance, and surface-active beetle larvae counts consistently higher, in intensively managed fields. Foliar invertebrates showed more consistent negatively relationships with management intensity. Most bird species occurred at low densities. There were consistent relationships across regions and years between the occurrence of birds and measures of field management. In winter, there was a tendency towards higher occupancy of intensively managed fields by species feeding on soil invertebrates. In summer, there were few such relationships, although many species avoided fields with tall swards. Use of fields by birds was generally not related to measures of seed or invertebrate food abundance. While granivorous species were perhaps too rare to detect a relationship, in insectivores the strong negative relationships (in summer) with sward height suggested that access to food may be the critical factor. While it appears that intensification of grassland management has been deleterious to the summer food resources of insectivorous birds that use insects living within the grass sward, intensification may have been beneficial to several species in winter through the enhancement of soil invertebrates. Synthesis and applications. We suggest that attempts to restore habitat quality for birds in grassland landscapes need to create a range of management intensities and sward structures at the field and farm scales. A greater understanding of methods to enhance prey accessibility, as well as abundance, for insectivorous birds is required.
Resumo:
The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.
Resumo:
The effects of chlorpyrifos on aquatic systems are well documented. However, the consequences of the pesticide on soil food webs are poorly understood. In this field study, we hypothesised that the addition of a soil insecticide to an area of upland grassland would impact spider and Collembola communities by decreasing numbers of spiders, consequently, causing an increase in detritivore numbers and diversity. Chlorpyrifos was added to plots on an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps (activity density) and identified to species. Twelve species of Collembola were identified from the insecticide-treated and control plots. Species diversity, richness and evenness were all reduced in the chlorpyrifos plots, although the total number of Collembola increased ten-fold despite the abundance of some spider species being reduced. The dominant collembolan in the insecticide-treated plots was Ceratophysella denticulata, accounting for over 95% of the population. Forty-three species of spider were identified. There were a reduced number of spiders in insecticide-treated plots due mainly to a lower number of the linyphiid, Tiso vagans. However, there was no significant difference in spider diversity between the control and insecticide treatments. We discuss possible explanations for the increase in abundance of one collembolan species in response to chlorpyrifos and the consequences of this. The study emphasises the importance of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production. It also highlights the need for identification of soil invertebrates to an 'appropriate' taxonomic level for biodiversity estimates. (C) 2007 Elsevier GrnbH. All rights reserved.
Resumo:
The relationship between plant species diversity, productivity and the development of the soil community during early secondary succession on former arable land across Europe is investigated. The enhancement of biomass production due to the increase in initial plant species diversity and the consequent stimulation of soil microbial biomass and abundance of soil invertebrates are examined.
Resumo:
Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.
Resumo:
1. The establishment of grassy strips at the margins of arable fields is an agri-environment scheme that aims to provide resources for native flora and fauna and thus increase farmland biodiversity. These margins can be managed to target certain groups, such as farmland birds and pollinators, but the impact of such management on the soil fauna has been poorly studied. This study assessed the effect of seed mix and management on the biodiversity, conservation and functional value of field margins for soil macrofauna. 2. Experimental margin plots were established in 2001 in a winter wheat field in Cambridgeshire, UK, using a factorial design of three seed mixes and three management practices [spring cut, herbicide application and soil disturbance (scarification)]. In spring and autumn 2005, soil cores taken from the margin plots and the crop were hand-sorted for soil macrofauna. The Lumbricidae, Isopoda, Chilopoda, Diplopoda, Carabidae and Staphylinidae were identified to species and classified according to feeding type. 3. Diversity in the field margins was generally higher than in the crop, with the Lumbricidae, Isopoda and Coleoptera having significantly more species and/or higher abundances in the margins. Within the margins, management had a significant effect on the soil macrofauna, with scarified plots containing lower abundances and fewer species of Isopods. The species composition of the scarified plots was similar to that of the crop. 4. Scarification also reduced soil- and litter-feeder abundances and predator species densities, although populations appeared to recover by the autumn, probably as a result of dispersal from neighbouring plots and boundary features. The implications of the responses of these feeding groups for ecosystem services are discussed. 5. Synthesis and applications. This study shows that the management of agri-environment schemes can significantly influence their value for soil macrofauna. In order to encourage the litter-dwelling invertebrates that tend to be missing from arable systems, agri-environment schemes should aim to minimize soil cultivation and develop a substantial surface litter layer. However, this may conflict with other aims of these schemes, such as enhancing floristic and pollinator diversity.
Resumo:
Buffer strips are refuges for a variety of plants providing resources, such as pollen, nectar and seeds, for higher trophic levels, including invertebrates, mammals and birds. Margins can also harbour plant species that are potentially injurious to the adjacent arable crop (undesirable species). Sowing perennial species in non-cropped buffer strips can reduce weed incidence, but limits the abundance of annuals with the potential to support wider biodiversity (desirable species). We investigated the responses of unsown plant species present in buffer strips established with three different seed mixes managed annually with three contrasting management regimes (cutting, sward scarification and selective graminicide). Sward scarification had the strongest influence on the unsown desirable (e.g. Sonchus spp.) and unsown pernicious (e.g. Elytrigia repens) species, and was generally associated with higher cover values of these species. However, abundances of several desirable weed species, in particular Poa annua, were not promoted by scarification. The treatments of cutting and graminicide tended to have negative impacts on the unsown species, except for Cirsium vulgare, which increased with graminicide application. Differences in unsown species cover between seed mixes were minimal, although the grass-only mix was more susceptible to establishment by C. vulgare and Galium aparine than the two grass and forb mixes. Annual scarification can enable desirable annuals and sown perennials to co-exist, however, this practice can also promote pernicious species, and so is unlikely to be widely adopted as a management tool in its current form.
Resumo:
Oviposition behaviour is important when modelling the population dynamics of many invertebrates. The numbers of eggs laid are frequently used to describe fecundity, but this measure may differ significantly from realised fecundity. Oviposition has been shown to be important when describing the dynamics of slug populations, which are important agricultural pests. The numbers of eggs laid by Deroceras reticulatum and their viability were measured across a range of 16 temperature (4, 10, 15 and 23 degrees C) by moisture (33%, 42%, 53% and 58% by dry soil weight) experimental combinations. A fitted quadratic response surface model was used to estimate how D. reticulatum adjusted its egg laying to the surrounding temperature and moisture conditions, with most eggs being laid at a combination of 53% soil moisture and 18 degrees C. The number and proportion of viable eggs also covaried with temperature and moisture, suggesting that D. reticulatum may alter their investment in reproduction to maximise their fitness. We have shown that the number of viable eggs differs from the total number of eggs laid by D. reticulatum. Changes in egg viability with temperature and moisture may also be seen in other species and should be considered when modelling populations of egg-laying invertebrates.