3 resultados para Intolerância à lactose : Diagnóstico
em CentAUR: Central Archive University of Reading - UK
Resumo:
A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.
Classification of lactose and mandelic acid THz spectra using subspace and wavelet-packet algorithms
Resumo:
This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.
Resumo:
The bifidobacterial β-galactosidase BbgIV was immobilised on DEAE-Cellulose and Q-Sepharose via ionic binding and on amino-ethyl- and glyoxal-agarose via covalent attachment, and was then used to catalyse the synthesis of galactooligosaccharides (GOS). The immobilisation yield exceeded 90 % using ionic binding, while it was low using aminoethyl agarose (25 – 28 %) and very low using glyoxal agarose (< 3 %). This was due to the mild conditions and absence of chemical reagents in ionic binding, compared to covalent attachment. The maximum GOS yield obtained using DEAE-Cellulose and Q-Sepharose was similar to that obtained using free BbgIV (49 – 53 %), indicating the absence of diffusion limitation and mass transfer issues. For amino-ethyl agarose, however, the GOS yield obtained was lower (42 – 44 %) compared to that obtained using free BbgIV. All the supports tried significantly (P < 0.05) increased the BbgIV operational stability and the GOS synthesis productivity up to 55 °C. Besides, six successive GOS synthesis batches were performed using BbgIV immobilised on Q-Sepharose; all resulted in similar GOS yields, indicating the possibility of developing a robust synthesis process. Overall, the GOS synthesis operation performance using BbgIV was improved by immobilising the enzyme onto solid supports, in particular on Q-Sepharose