4 resultados para Interruptions

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AC microsatellites have proved particularly useful as genetic markers. For some purposes, such as in population biology, the inferences drawn depend on the quantitative values of their mutation rates. This, together with intrinsic biological interest, has led to widespread study of microsatellite mutational mechanisms. Now, however, inconsistencies are appearing in the results of marker-based versus non-marker-based studies of mutational mechanisms. The reasons for this have not been investigated, but one possibility, pursued here, is that the differences result from structural differences between markers and genomic microsatellites. Here we report a comparison between the CEPH AC marker microsatellites and the global population of AC microsatellites in the human genome. AC marker microsatellites are longer than the global average. Controlling for length, marker microsatellites contain on average fewer interruptions, and have longer segments, than their genomic counterparts. Related to this, marker microsatellites show a greater tendency to concentrate the majority of their repeats into one segment. These differences plausibly result from scientists selecting markers for their high polymorphism. In addition to the structural differences, there are differences in the base composition of flanking sequences, marker flanking regions being richer in C and G and poorer in A and T. Our results indicate that there are profound differences between marker and genomic microsatellites that almost certainly affect their mutation rates. There is a need for a unified model of mutational mechanisms that accounts for both marker-derived and genomic observations. A suggestion is made as to how this might be done.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsatellite lengths change over evolutionary time through a process of replication slippage. A recently proposed model of this process holds that the expansionary tendencies of slippage mutation are balanced by point mutations breaking longer microsatellites into smaller units and that this process gives rise to the observed frequency distributions of uninterrupted microsatellite lengths. We refer to this as the slippage/point-mutation theory. Here we derive the theory's predictions for interrupted microsatellites comprising regions of perfect repeats, labeled segments, separated by dinucleotide interruptions containing point mutations. These predictions are tested by reference to the frequency distributions of segments of AC microsatellite in the human genome, and several predictions are shown not to be supported by the data, as follows. The estimated slippage rates are relatively low for the first four repeats, and then rise initially linearly with length, in accordance with previous work. However, contrary to expectation and the experimental evidence, the inferred slippage rates decline in segments above 10 repeats. Point mutation rates are also found to be higher within microsatellites than elsewhere. The theory provides an excellent fit to the frequency distribution of peripheral segment lengths but fails to explain why internal segments are shorter. Furthermore, there are fewer microsatellites with many segments than predicted. The frequencies of interrupted microsatellites decline geometrically with microsatellite size measured in number of segments, so that for each additional segment, the number of microsatellites is 33.6% less. Overall we conclude that the detailed structure of interrupted microsatellites cannot be reconciled with the existing slippage/point-mutation theory of microsatellite evolution, and we suggest that microsatellites are stabilized by processes acting on interior rather than on peripheral segments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To examine the causes of prescribing and monitoring errors in English general practices and provide recommendations for how they may be overcome. Design: Qualitative interview and focus group study with purposive sampling and thematic analysis informed by Reason’s accident causation model. Participants: General practice staff participated in a combination of semi-structured interviews (n=34) and six focus groups (n=46). Setting: Fifteen general practices across three primary care trusts in England. Results: We identified seven categories of high-level error-producing conditions: the prescriber, the patient, the team, the task, the working environment, the computer system, and the primary-secondary care interface. Each of these was further broken down to reveal various error-producing conditions. The prescriber’s therapeutic training, drug knowledge and experience, knowledge of the patient, perception of risk, and their physical and emotional health, were all identified as possible causes. The patient’s characteristics and the complexity of the individual clinical case were also found to have contributed to prescribing errors. The importance of feeling comfortable within the practice team was highlighted, as well as the safety of general practitioners (GPs) in signing prescriptions generated by nurses when they had not seen the patient for themselves. The working environment with its high workload, time pressures, and interruptions, and computer related issues associated with mis-selecting drugs from electronic pick-lists and overriding alerts, were all highlighted as possible causes of prescribing errors and often interconnected. Conclusion: This study has highlighted the complex underlying causes of prescribing and monitoring errors in general practices, several of which are amenable to intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Care home residents are at particular risk from medication errors, and our objective was to determine the prevalence and potential harm of prescribing, monitoring, dispensing and administration errors in UK care homes, and to identify their causes. Methods: A prospective study of a random sample of residents within a purposive sample of homes in three areas. Errors were identified by patient interview, note review, observation of practice and examination of dispensed items. Causes were understood by observation and from theoretically framed interviews with home staff, doctors and pharmacists. Potential harm from errors was assessed by expert judgement. Results: The 256 residents recruited in 55 homes were taking a mean of 8.0 medicines. One hundred and seventy-eight (69.5%) of residents had one or more errors. The mean number per resident was 1.9 errors. The mean potential harm from prescribing, monitoring, administration and dispensing errors was 2.6, 3.7, 2.1 and 2.0 (0 = no harm, 10 = death), respectively. Contributing factors from the 89 interviews included doctors who were not accessible, did not know the residents and lacked information in homes when prescribing; home staff’s high workload, lack of medicines training and drug round interruptions; lack of team work among home, practice and pharmacy; inefficient ordering systems; inaccurate medicine records and prevalence of verbal communication; and difficult to fill (and check) medication administration systems. Conclusions: That two thirds of residents were exposed to one or more medication errors is of concern. The will to improve exists, but there is a lack of overall responsibility. Action is required from all concerned.