5 resultados para International Radiotelegraph Conference, Washington, D.C., 1927 (2d revisional conference).
em CentAUR: Central Archive University of Reading - UK
Resumo:
Many producers of geographic information are now disseminating their data using open web service protocols, notably those published by the Open Geospatial Consortium. There are many challenges inherent in running robust and reliable services at reasonable cost. Cloud computing provides a new kind of scalable infrastructure that could address many of these challenges. In this study we implement a Web Map Service for raster imagery within the Google App Engine environment. We discuss the challenges of developing GIS applications within this framework and the performance characteristics of the implementation. Results show that the application scales well to multiple simultaneous users and performance will be adequate for many applications, although concerns remain over issues such as latency spikes. We discuss the feasibility of implementing services within the free usage quotas of Google App Engine and the possibility of extending the approaches in this paper to other GIS applications.
Resumo:
In the earth sciences, data are commonly cast on complex grids in order to model irregular domains such as coastlines, or to evenly distribute grid points over the globe. It is common for a scientist to wish to re-cast such data onto a grid that is more amenable to manipulation, visualization, or comparison with other data sources. The complexity of the grids presents a significant technical difficulty to the regridding process. In particular, the regridding of complex grids may suffer from severe performance issues, in the worst case scaling with the product of the sizes of the source and destination grids. We present a mechanism for the fast regridding of such datasets, based upon the construction of a spatial index that allows fast searching of the source grid. We discover that the most efficient spatial index under test (in terms of memory usage and query time) is a simple look-up table. A kd-tree implementation was found to be faster to build and to give similar query performance at the expense of a larger memory footprint. Using our approach, we demonstrate that regridding of complex data may proceed at speeds sufficient to permit regridding on-the-fly in an interactive visualization application, or in a Web Map Service implementation. For large datasets with complex grids the new mechanism is shown to significantly outperform algorithms used in many scientific visualization packages.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.