14 resultados para Intermodal terminals.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background and purpose: Carisbamate is being developed for adjuvant treatment of partial onset epilepsy. Carisbamate produces anticonvulsant effects in primary generalized, complex partial and absence-type seizure models, and exhibits neuroprotective and antiepileptogenic properties in rodent epilepsy models. Phase IIb clinical trials of carisbamate demonstrated efficacy against partial onset seizures; however, its mechanisms of action remain unknown. Here, we report the effects of carisbamate on membrane properties, evoked and spontaneous synaptic transmission and induced epileptiform discharges in layer II-III neurones in piriform cortical brain slices. Experimental approach: Effects of carisbamate were investigated in rat piriform cortical neurones by using intracellular electrophysiological recordings. Key results: Carisbamate (50–400 mmol·L-1) reversibly decreased amplitude, duration and rise-time of evoked action potentials and inhibited repetitive firing, consistent with use-dependent Na+ channel block; 150–400 mmol·L-1 carisbamate reduced neuronal input resistance, without altering membrane potential. After microelectrode intracellular Cl- loading, carisbamate depolarized cells, an effect reversed by picrotoxin. Carisbamate (100–400 mmol·L-1) also selectively depressed lateral olfactory tract-afferent evoked excitatory synaptic transmission (opposed by picrotoxin), consistent with activation of a presynaptic Cl conductance. Lidocaine (40–320 mmol·L-1) mimicked carisbamate, implying similar modes of action. Carisbamate (300–600 mmol·L-1) had no effect on spontaneous GABAA miniature inhibitory postsynaptic currents and at lower concentrations (50–200 mmol·L-1) inhibited Mg2+-free or 4-aminopyridine-induced seizure-like discharges. Conclusions and implications: Carisbamate blocked evoked action potentials use-dependently, consistent with a primary action on Na+ channels and increased Cl- conductances presynaptically and, under certain conditions, postsynaptically to selectively depress excitatory neurotransmission in piriform cortical layer Ia-afferent terminals.
Resumo:
-Aminobutyric acid type A (GABAA) receptors, a family of Cl-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for -aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated byGABAA receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABAA receptor activation correlated with an increase in basal intraterminal [Ca2]i. Interestingly, this activation of GABAA receptors resulted in a reduction of subsequent depolarization-evoked Ca2 influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABAA receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca2 with Ba2, or Ca2/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABAA receptors. Application of selective antagonists of voltage-gated Ca2 channels (VGCCs) revealed that the GABAA receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABAA receptors and L- or R-type VGCCs is mediated by Ca2/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.
Resumo:
Throughout the central nervous system a dominant form of inhibition of neurotransmitter release from presynaptic terminals is mediated by G-protein-coupled receptors (GPCRs). Neurotransmitter release is typically induced by action potentials (APs), but can also occur spontaneously. Presynaptic inhibition by GPCRs has been associated with modulation of voltage-dependent ion channels. However, electrophysiological recordings of spontaneous, AP-independent (so-called ‘miniature’) postsynaptic events reveal an additional, important form of GPCR-mediated presynaptic inhibition, distinct from effects on ionic conductances and consistent with a direct action on the vesicle release machinery. Recent studies suggest that such miniature events might be of physiological relevance not only in signalling but also in development. In the cerebellum, neurotransmitter release onto Purkinje cells occurs by AP-dependent and AP-independent pathways. Here, I focus on inhibitory synapses between interneurons and Purkinje cells, which are subject to strong, identifiable regulation by endogenous GPCR agonists, to consider mechanisms of GPCR-mediated presynaptic inhibition.
Resumo:
Halberda (2003) demonstrated that 17-month-old infants, but not 14- or 16-month-olds, use a strategy known as mutual exclusivity (ME) to identify the meanings of new words. When 17-month-olds were presented with a novel word in an intermodal preferential looking task, they preferentially fixated a novel object over an object for which they already had a name. We explored whether the development of this word-learning strategy is driven by children's experience of hearing only one name for each referent in their environment by comparing the behavior of infants from monolingual and bilingual homes. Monolingual infants aged 17–22 months showed clear evidence of using an ME strategy, in that they preferentially fixated the novel object when they were asked to "look at the dax." Bilingual infants of the same age and vocabulary size failed to show a similar pattern of behavior. We suggest that children who are raised with more than one language fail to develop an ME strategy in parallel with monolingual infants because development of the bias is a consequence of the monolingual child's everyday experiences with words.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
The activation of presynaptic G protein-coupled receptors (GPCRs) is widely reported to inhibit transmitter release; however, the lack of accessibility of many presynaptic terminals has limited direct analysis of signalling mediators. We studied GPCR-mediated inhibition of fast cholinergic transmission between superior cervical ganglion neurones (SCGNs) in culture. The adrenoceptor agonist noradrenaline (NA) caused a dose-related reduction in evoked excitatory postsynaptic potentials (EPSPs). NA-induced EPSP decrease was accompanied by effects on the presynaptic action potential (AP), reducing AP duration and amplitude of the after-hyperpolarization (AHP), without affecting the pre- and postsynaptic membrane potential. All effects of NA were blocked by yohimbine and synaptic transmission was reduced by clonidine, consistent with an action at presynaptic alpha 2-adrenoceptors. NA-induced inhibition of transmission was sensitive to pre-incubation of SCGNs with pertussis toxin (PTX), implicating the involvement of G alpha(i)/(o)beta y subunits. Expression of G alpha transducin, an agent which sequesters G protein beta gamma (G beta y) subunits, in the presynaptic neurone caused a time-dependent attenuation of NA-induced inhibition. Injection of purified G beta gamma subunits into the presynaptic neurone inhibited transmission, and also reduced the AHP amplitude. Furthermore, NA-induced inhibition was occluded by pre-injection of G beta gamma subunits. The Ca2+ channel blocker Cd2+ mimicked NA effects on transmitter release. Cd2+, NA and G beta gamma subunits also inhibited somatic Ca2+ current. In contrast to effects on AP-evoked transmitter release, NA had no clear action on AP-independent EPSPs induced by hypertonic solutions. These results demonstrate that G beta gamma subunits functionally mediate inhibition of transmitter release by alpha 2-adrenoceptors and represent important regulators of synaptic transmission at mammalian presynaptic terminals.
Resumo:
This article explores whether infants are able to learn words as rapidly as has been reported for preschoolers. Sixty-four infants aged 1;6 were taught labels for either two moving images or two still images. Each image-label pair was presented three times, after which comprehension was assessed using an adaptation of the intermodal preferential looking paradigm. Three repetitions of each label were found to be sufficient for learning to occur, fewer than has previously been reported for infants under two years. Moreover, contrary to a previous finding, learning was equally rapid for infants who were taught labels for moving versus still images. The findings indicate that infants in the early stages of acquiring a vocabulary learn new word-referent associations with ease, and that the learning conditions that allow such learning are less restricted that was previously believed.
Resumo:
Media content distribution on-demand becomes more complex when performed on a mass scale involving various channels with distinct and dynamic network characteristics, and, deploying a variety of terminal devices offering a wide range of capabilities. It is practically impossible to create and prepackage various static versions of the same content to match all the varying demand parameters of clients for various contexts. In this paper we present a profiling management approach for dynamically personalised media content delivery on-demand integrated with the AXMEDIS Framework. The client profiles comprise the representation of User, Device, Network and Context of content delivery based on MPEG-21:DIA. Although the most challenging proving ground for this personalised content delivery has been the mobile testbed i.e. the distribution to mobile handsets, the framework described here can be deployed for disribution, by the AXMEDIS PnP module, through other channels e.g. satellite, Internet to a range of client terminals e.g. desktops, kiosks, IPtv and other terrminals whose baseline terminal capabilities can be made availabe by the manufacturers as is normal.
Resumo:
The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.
Resumo:
Typeface design: collaborative work commissioned by Adobe Inc. Published but unreleased. The Adobe Devanagari typefaces were commissioned from Tiro Typeworks and collaboratively designed by Tim Holloway, Fiona Ross and John Hudson, beginning in 2005. The types were officially released in 2009. The design brief was to produce a typeface for modern business communications in Hindi and other languages, to be legible both in print and on screen. Adobe Devanagari was designed to be highly readable in a range of situations including quite small sizes in spreadsheets and in continuous text setting, as well as at display sizes, where the full character of the typeface reveals itself. The construction of the letters is based on traditional penmanship but possesses less stroke contrast than many Devanagari types, in order to maintain strong, legible forms at smaller sizes. To achieve a dynamic, fluid style the design features a rounded treatment of distinguishing terminals and stroke reversals, open counters that also aid legibility at smaller sizes, and delicately flaring strokes. Together, these details reveal an original hand and provide a contemporary approach that is clean, clear and comfortable to read whether in short or long passages of text. This new approach to a traditional script is intended to counter the dominance of rigid, staccato-like effects of straight verticals and horizontals in earlier types and many existing fonts. OpenType Layout features in the fonts provide both automated and discretionary access to an extensive glyph set, enabling sophisticated typography. Many conjuncts preferred in classical literary texts and particularly in some North Indian languages are included; these literary conjuncts may be substituted by specially designed alternative linear forms and fitted half forms. The length of the ikars—ि and ी—varies automatically according to adjacent letter or conjunct width. Regional variants of characters and numerals (e.g. Marathi forms) are included as alternates. Careful attention has been given to the placements of all vowel signs and modifiers. The fonts include both proportional and tabular numerals in Indian and European styles. Extensive kerning covers several thousand possible combinations of half forms and full forms to anticipate arbitrary conjuncts in foreign loan words. _____
Resumo:
The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 +/- 1.4 ms) and high firing frequencies (68.9 +/- 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 mum). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K(+) current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects.
Resumo:
In this letter, we consider beamforming strategies in amplified-and-forward (AF) two-way relay channels, where two terminals and the relay are equipped with multiple antennas. Our aim is to optimize the worse end-to-end signal-to-noise ratio of the two links so that the reliability of both terminals can be guaranteed. We show that the optimization problem can be recast as a generalized fractional programing and be solved by using the Dinkelbach-type procedure combined with semidefinite programming. Simulation results confirm the efficiency of the proposed strategies.
Resumo:
We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates,with the scaling factor chosen based on automatic gain control. We consider equal power allocation (EPA) across the relays, as well as the optimal power allocation (OPA) strategy given access to instantaneous channel state information (CSI). For EPA, we derive an upper bound on the pairwise-error-probability (PEP), from which we prove that full diversity is achieved in TWRNs. This result is in contrast to one-way relay networks, in which case a maximum diversity order of only unity can be obtained. When instantaneous CSI is available at the relays, we show that the OPA which minimizes the conditional PEP of the worse link can be cast as a generalized linear fractional program, which can be solved efficiently using the Dinkelback-type procedure.We also prove that, if the sum-power of the relay terminals is constrained, then the OPA will activate at most two relays.
Resumo:
Ιn the eighteenth century the printing of Greek texts continued to be central to scholarship and discourse. The typography of Greek texts could be characterised as a continuation of French models from the sixteenth century, with a gradual dilution of the complexity of ligatures and abbreviations, mostly through printers in the Low Countries. In Britain, Greek printing was dominated by the university presses, which reproduced conservatively the continental models – exemplified by Oxford's Fell types, which were Dutch adaptations of earlier French models. Hindsight allows us to identify a meaningful development in the Greek types cut by Alexander Wilson for the Foulis Press in Glasgow, but we can argue that in the middle of the eighteenth century Baskerville was considering Greek printing the typographic environment was ripe for a new style of Greek types. The opportunity to cut the types for a New Testament (in an twin edition that included a generous octavo and a large quarto version) would seem perfect for showcasing Baskerville's capacity for innovation. His Greek type maintained the cursive ductus of earlier models, but abandoned complex ligatures and any hint of scribal flourish. He homogenised the modulation of the letter strokes and the treatment of terminals, and normalised the horizontal alignments of all letters. Although the strokes are in some letters too delicate, the narrow set of the style composes a consistent, uniform texture that is a clean break from contemporaneous models. The argument is made that this is the first Greek typeface that can be described as fully typographic in the context of the technology of the time. It sets a pattern that was to be followed, without acknowledgement, by Richard Porson nearly a century and a half later. The typeface received little praise by typographic historians, and was condemned by Victor Scholderer in his retrospective of Greek typography. A survey of typeface reviews in the surrounding decades establishes that the commentators were mostly reproducing the views of an arbitrary typographic orthodoxy, for which only types with direct references to Renaissance models were acceptable. In these comments we detect a bias against someone considered an arriviste in the scholarly printing establishment, as well as a conservative attitude to typographic innovation.