51 resultados para Interest rates -- Mathematical models.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Threshold Error Correction Models are used to analyse the term structure of interest Rates. The paper develops and uses a generalisation of existing models that encompasses both the Band and Equilibrium threshold models of [Balke and Fomby ((1997) Threshold cointegration. Int Econ Rev 38(3):627–645)] and estimates this model using a Bayesian approach. Evidence is found for threshold effects in pairs of longer rates but not in pairs of short rates. The Band threshold model is supported in preference to the Equilibrium model.
Resumo:
Linear models of property market performance may be misspecified if there exist distinct states where the market drivers behave in different ways. This paper examines the applicability of non-linear regime-based models. A Self Exciting Threshold Autoregressive (SETAR) model is applied to property company share data, using the real rate of interest to define regimes. Distinct regimes appear exhibiting markedly different market behaviour. The model both casts doubt on the specification of conventional linear models and offers the possibility of developing effective trading rules for real estate equities.
Resumo:
We test whether there are nonlinearities in the response of short- and long-term interest rates to the spread in interest rates, and assess the out-of-sample predictability of interest rates using linear and nonlinear models. We find strong evidence of nonlinearities in the response of interest rates to the spread. Nonlinearities are shown to result in more accurate short-horizon forecasts, especially of the spread.
Resumo:
This paper considers the effect of short- and long-term interest rates, and interest rate spreads upon real estate index returns in the UK. Using Johansen's vector autoregressive framework, it is found that the real estate index cointegrates with the term spread, but not with the short or long rates themselves. Granger causality tests indicate that movements in short term interest rates and the spread cause movements in the returns series. However, decomposition of the forecast error variances from VAR models indicate that changes in these variables can only explain a small proportion of the overall variability of the returns, and that the effect has fully worked through after two months. The results suggest that these financial variables could potentially be used as leading indicators for real estate markets, with corresponding implications for return predictability.
Resumo:
Foot and mouth disease (FMD) is a major threat, not only to countries whose economies rely on agricultural exports, but also to industrialised countries that maintain a healthy domestic livestock industry by eliminating major infectious diseases from their livestock populations. Traditional methods of controlling diseases such as FMD require the rapid detection and slaughter of infected animals, and any susceptible animals with which they may have been in contact, either directly or indirectly. During the 2001 epidemic of FMD in the United Kingdom (UK), this approach was supplemented by a culling policy driven by unvalidated predictive models. The epidemic and its control resulted in the death of approximately ten million animals, public disgust with the magnitude of the slaughter, and political resolve to adopt alternative options, notably including vaccination, to control any future epidemics. The UK experience provides a salutary warning of how models can be abused in the interests of scientific opportunism.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
In this paper we examine the order of integration of EuroSterling interest rates by employing techniques that can allow for a structural break under the null and/or alternative hypothesis of the unit-root tests. In light of these results, we investigate the cointegrating relationship implied by the single, linear expectations hypothesis of the term structure of interest rates employing two techniques, one of which allows for the possibility of a break in the mean of the cointegrating relationship. The aim of the paper is to investigate whether or not the interest rate series can be viewed as I(1) processes and furthermore, to consider whether there has been a structural break in the series. We also determine whether, if we allow for a break in the cointegration analysis, the results are consistent with those obtained when a break is not allowed for. The main results reported in this paper support the conjecture that the ‘short’ Euro-currency rates are characterised as I(1) series that exhibit a structural break on or near Black Wednesday, 16 September 1992, whereas the ‘long’ rates are I(1) series that do not support the presence of a structural break. The evidence from the cointegration analysis suggests that tests of the expectations hypothesis based on data sets that include the ERM crisis period, or a period that includes a structural break, might be problematic if the structural break is not explicitly taken into account in the testing framework.
Resumo:
Using a variation of the Nelson-Siegel term structure model we examine the sensitivity of real estate securities in six key global markets to unexpected changes in the level, slop and curvature of the yield curve. Our results confirm the time-sensitive nature of the exposure and sensitivity to interest rates and highlight the importance of considering the entire term structure of interest rates. One issue that is of particular of interest is that despite the 2007-9 financial crisis the importance of unanticipated interest rate risk weakens post 2003. Although the analysis does examine a range of markets the empirical analysis is unable to provide definitive evidence as to whether REIT and property-company markets display heightened or reduced exposure.
Resumo:
A major gap in our understanding of the medieval economy concerns interest rates, especially relating to commercial credit. Although direct evidence about interest rates is scattered and anecdotal, there is much more surviving information about exchange rates. Since both contemporaries and historians have suggested that exchange and rechange transactions could be used to disguise the charging of interest in order to circumvent the usury prohibition, it should be possible to back out the interest rates from exchange rates. The following analysis is based on a new dataset of medieval exchange rates collected from commercial correspondence in the archive of Francesco di Marco Datini of Prato, c.1383-1411. It demonstrates that the time value of money was consistently incorporated into market exchange rates. Moreover, these implicit interest rates are broadly comparable to those received from other types of commercial loan and investment. Although on average profitable, the return on any individual exchange and rechange transaction did involve a degree of uncertainty that may have justified their non-usurious nature. However, there were also practical reasons why medieval merchants may have used foreign exchange transactions as a means of extending credit.
Resumo:
The performance of various statistical models and commonly used financial indicators for forecasting securitised real estate returns are examined for five European countries: the UK, Belgium, the Netherlands, France and Italy. Within a VAR framework, it is demonstrated that the gilt-equity yield ratio is in most cases a better predictor of securitized returns than the term structure or the dividend yield. In particular, investors should consider in their real estate return models the predictability of the gilt-equity yield ratio in Belgium, the Netherlands and France, and the term structure of interest rates in France. Predictions obtained from the VAR and univariate time-series models are compared with the predictions of an artificial neural network model. It is found that, whilst no single model is universally superior across all series, accuracy measures and horizons considered, the neural network model is generally able to offer the most accurate predictions for 1-month horizons. For quarterly and half-yearly forecasts, the random walk with a drift is the most successful for the UK, Belgian and Dutch returns and the neural network for French and Italian returns. Although this study underscores market context and forecast horizon as parameters relevant to the choice of the forecast model, it strongly indicates that analysts should exploit the potential of neural networks and assess more fully their forecast performance against more traditional models.
Resumo:
We test the expectations theory of the term structure of U.S. interest rates in nonlinear systems. These models allow the response of the change in short rates to past values of the spread to depend upon the level of the spread. The nonlinear system is tested against a linear system, and the results of testing the expectations theory in both models are contrasted. We find that the results of tests of the implications of the expectations theory depend on the size and sign of the spread. The long maturity spread predicts future changes of the short rate only when it is high.