142 resultados para Interactive Techniques
em CentAUR: Central Archive University of Reading - UK
Resumo:
n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.
Resumo:
Subcellular fractionation techniques were used to describe temporal changes (at intervals from T0 to T70 days) in the Pb, Zn and P partitioning profiles of Lumbricus rubellus populations from one calcareous (MDH) and one acidic (MCS) geographically isolated Pb/Zn-mine sites and one reference site (CPF). MDH and MCS individuals were laboratory maintained on their native field soils; CPF worms were exposed to both MDH and MCS soils. Site-specific differences in metal partitioning were found: notably, the putatively metal-adapted populations, MDH and MCS, preferentially partitioned higher proportions of their accumulated tissue metal burdens into insoluble CaPO4-rich organelles compared with naive counterparts, CPF. Thus, it is plausible that efficient metal immobilization is a phenotypic trait characterising metal tolerant ecotypes. Mitochondrial cytochrome oxidase II (COII) genotyping revealed that the populations indigenous to mine and reference soils belong to distinct genetic lineages, differentiated by 13%, with 7 haplotypes within the reference site lineage but fewer (3 and 4, respectively) in the lineage common to the two mine sites. Collectively, these observations raise the possibility that site-related genotype differences could influence the toxico-availability of metals and, thus, represent a potential confounding variable in field-based eco-toxicological assessments.
Resumo:
One of the most challenging tasks in financial management for large governmental and industrial organizations is Planning and Budgeting (P&B). The processes involved with P&B are cost and time intensive, especially when dealing with uncertainties and budget adjustments during the planning horizon. This work builds on our previous research in which we proposed and evaluated a fuzzy approach that allows optimizing the budget interactively beyond the initial planning stage. In this research we propose an extension that handles financial stress (i.e. drastic budget cuts) occurred during the budget period. This is done by introducing fuzzy stress parameters which are used to re-distribute the budget in order to minimize the negative impact of the financial stress. The benefits and possible issues of this approach are analyzed critically using a real world case study from the Nuremberg Institute of Technology (NIT). Additionally, ongoing and future research directions are presented.
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
Resumo:
Context-aware multimodal interactive systems aim to adapt to the needs and behavioural patterns of users and offer a way forward for enhancing the efficacy and quality of experience (QoE) in human-computer interaction. The various modalities that constribute to such systems each provide a specific uni-modal response that is integratively presented as a multi-modal interface capable of interpretation of multi-modal user input and appropriately responding to it through dynamically adapted multi-modal interactive flow management , This paper presents an initial background study in the context of the first phase of a PhD research programme in the area of optimisation of data fusion techniques to serve multimodal interactivite systems, their applications and requirements.
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.
Resumo:
This review introduces the methods used to simulate the processes affecting dissolved oxygen (DO) in lowland rivers. The important processes are described and this provides a modelling framework to describe those processes in the context of a mass-balance model. The process equations that are introduced all require (reaction) rate parameters and a variety of common procedures for identifying those parameters are reviewed. This is important because there is a wide range of estimation techniques for many of the parameters. These different techniques elicit different estimates of the parameter value and so there is the potential for a significant uncertainty in the model's inputs and therefore in the output too. Finally, the data requirements for modelling DO in lowland rivers are summarised on the basis of modelling the processes described in this review using a mass-balance model. This is reviewed with regard to what data are available and from where they might be obtained. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ochre samples excavated from the neolithic site at Qatalhoyuk, Turkey have been compared with "native" ochres from Clearwell Caves, UK using infrared spectroscopy backed up by Raman spectroscopy, scanning electron microscopy (with energy-dispersive X-rays (EDX) analysis), powder X-ray diffraction, diffuse reflection UV-Vis and atomic absorption spectroscopies. For the Clearwell Caves ochres, which range in colour from yellow-orange to red-brown, it is shown that the colour is related to the nature of the chromophore present and not to any differences in particle size. The darker red ochres contain predominantly haematite while the yellow ochre contains only goethite. The ochres from Qatalhoyuk contain only about one-twentieth of the levels of iron found in the Clearwell Caves ochres. The iron oxide pigment (haematite in all cases studied here) has been mixed with a soft lime plaster which also contains calcite and silicate (clay) minerals. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The ultimate criterion of success for interactive expert systems is that they will be used, and used to effect, by individuals other than the system developers. A key ingredient of success in most systems is involving users in the specification and development of systems as they are being built. However, until recently, system designers have paid little attention to ascertaining user needs and to developing systems with corresponding functionality and appropriate interfaces to match those requirements. Although the situation is beginning to change, many developers do not know how to go about involving users, or else tackle the problem in an inadequate way. This paper discusses the need for user involvement and considers why many developers are still not involving users in an optimal way. It looks at the different ways in which users can be involved in the development process and describes how to select appropriate techniques and methods for studying users. Finally, it discusses some of the problems inherent in involving users in expert system development, and recommends an approach which incorporates both ethnographic analysis and formal user testing.