85 resultados para Inter Session Variability Modelling
em CentAUR: Central Archive University of Reading - UK
Resumo:
The externally recorded electroencephalogram (EEG) is contaminated with signals that do not originate from the brain, collectively known as artefacts. Thus, EEG signals must be cleaned prior to any further analysis. In particular, if the EEG is to be used in online applications such as Brain-Computer Interfaces (BCIs) the removal of artefacts must be performed in an automatic manner. This paper investigates the robustness of Mutual Information based features to inter-subject variability for use in an automatic artefact removal system. The system is based on the separation of EEG recordings into independent components using a temporal ICA method, RADICAL, and the utilisation of a Support Vector Machine for classification of the components into EEG and artefact signals. High accuracy and robustness to inter-subject variability is achieved.
Resumo:
A dynamical wind-wave climate simulation covering the North Atlantic Ocean and spanning the whole 21st century under the A1B scenario has been compared with a set of statistical projections using atmospheric variables or large scale climate indices as predictors. As a first step, the performance of all statistical models has been evaluated for the present-day climate; namely they have been compared with a dynamical wind-wave hindcast in terms of winter Significant Wave Height (SWH) trends and variance as well as with altimetry data. For the projections, it has been found that statistical models that use wind speed as independent variable predictor are able to capture a larger fraction of the winter SWH inter-annual variability (68% on average) and of the long term changes projected by the dynamical simulation. Conversely, regression models using climate indices, sea level pressure and/or pressure gradient as predictors, account for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the dynamically projected long term trends over the North Atlantic. Investigating the wind-sea and swell components separately, we have found that the combination of two regression models, one for wind-sea waves and another one for the swell component, can improve significantly the wave field projections obtained from single regression models over the North Atlantic.
Resumo:
The purpose of Research Theme 4 (RT4) was to advance understanding of the basic science issues at the heart of the ENSEMBLES project, focusing on the key processes that govern climate variability and change, and that determine the predictability of climate. Particular attention was given to understanding linear and non-linear feedbacks that may lead to climate surprises,and to understanding the factors that govern the probability of extreme events. Improved understanding of these issues will contribute significantly to the quantification and reduction of uncertainty in seasonal to decadal predictions and projections of climate change. RT4 exploited the ENSEMBLES integrations (stream 1) performed in RT2A as well as undertaking its own experimentation to explore key processes within the climate system. It was working at the cutting edge of problems related to climate feedbacks, the interaction between climate variability and climate change � especially how climate change pertains to extreme events, and the predictability of the climate system on a range of time-scales. The statisticalmethodologies developed for extreme event analysis are new and state-of-the-art. The RT4-coordinated experiments, which have been conducted with six different atmospheric GCMs forced by common timeinvariant sea surface temperature (SST) and sea-ice fields (removing some sources of inter-model variability), are designed to help to understand model uncertainty (rather than scenario or initial condition uncertainty) in predictions of the response to greenhouse-gas-induced warming. RT4 links strongly with RT5 on the evaluation of the ENSEMBLES prediction system and feeds back its results to RT1 to guide improvements in the Earth system models and, through its research on predictability, to steer the development of methods for initialising the ensembles
Resumo:
The consistency of precipitation variability estimated from the multiple satellite-based observing systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is -8 to -11%/K for the 1998-2008 period. Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical regimes is less coherent and varies with datasets, but responses over the tropical land show significant negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets strongly influence the precipitation responses over the tropical oceans and help explain some of the discrepancy between different datasets. Consistency between datasets is found to increase on averaging from daily to 5-day time-scales and considering a 1o (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the 60th percentile of P intensity, the 5-day average, 1o TMI data exhibits a coherent drying of the dry regime at the rate of -20%/K and the wet regime becomes wetter at a similar rate with warming.
Resumo:
An NMR-based pharmacometabonomic approach was applied to investigate inter-animal variation in response to isoniazid (INH; 200 and 400 mg/kg) in male Sprague-Dawley rats, alongside complementary clinical chemistry and histopathological analysis. Marked inter-animal variability in central nervous system (CNS) toxicity was identified following administration of a high dose of INH, which enabled characterization of CNS responders and CNS non-responders. High-resolution post-dose urinary (1)H NMR spectra were modeled both by their xenobiotic and endogenous metabolic information sets, enabling simultaneous identification of the differential metabolic fate of INH and its associated endogenous metabolic consequences in CNS responders and CNS non-responders. A characteristic xenobiotic metabolic profile was observed for CNS responders, which revealed higher urinary levels of pyruvate isonicotinylhydrazone and β-glucosyl isonicotinylhydrazide and lower levels of acetylisoniazid compared to CNS non-responders. This suggested that the capacity for acetylation of INH was lower in CNS responders, leading to increased metabolism via conjugation with pyruvate and glucose. In addition, the endogenous metabolic profile of CNS responders revealed higher urinary levels of lactate and glucose, in comparison to CNS non-responders. Pharmacometabonomic analysis of the pre-dose (1)H NMR urinary spectra identified a metabolic signature that correlated with the development of INH-induced adverse CNS effects and may represent a means of predicting adverse events and acetylation capacity when challenged with high dose INH. Given the widespread use of INH for the treatment of tuberculosis, this pharmacometabonomic screening approach may have translational potential for patient stratification to minimize adverse events.
Resumo:
We have incorporated a semi-mechanistic isoprene emission module into the JULES land-surface scheme, as a first step towards a modelling tool that can be applied for studies of vegetation – atmospheric chemistry interactions, including chemistry-climate feedbacks. Here, we evaluate the coupled model against local above-canopy isoprene emission flux measurements from six flux tower sites as well as satellite-derived estimates of isoprene emission over tropical South America and east and south Asia. The model simulates diurnal variability well: correlation coefficients are significant (at the 95 % level) for all flux tower sites. The model reproduces day-to-day variability with significant correlations (at the 95 % confidence level) at four of the six flux tower sites. At the UMBS site, a complete set of seasonal observations is available for two years (2000 and 2002). The model reproduces the seasonal pattern of emission during 2002, but does less well in the year 2000. The model overestimates observed emissions at all sites, which is partially because it does not include isoprene loss through the canopy. Comparison with the satellite-derived isoprene-emission estimates suggests that the model simulates the main spatial patterns, seasonal and inter-annual variability over tropical regions. The model yields a global annual isoprene emission of 535 ± 9 TgC yr−1 during the 1990s, 78 % of which from forested areas.
Resumo:
NO2 measurements during 1990–2007, obtained from a zenith-sky spectrometer in the Antarctic, are analysed to determine the long-term changes in NO2. An atmospheric photochemical box model and a radiative transfer model are used to improve the accuracy of determination of the vertical columns from the slant column measurements, and to deduce the amount of NOy from NO2. We find that the NO2 and NOy columns in midsummer have large inter-annual variability superimposed on a broad maximum in 2000, with little or no overall trend over the full time period. These changes are robust to a variety of alternative settings when determining vertical columns from slant columns or determining NOy from NO2. They may signify similar changes in speed of the Brewer-Dobson circulation but with opposite sign, i.e. a broad minimum around 2000. Multiple regressions show significant correlation with solar and quasi-biennial-oscillation indices, and weak correlation with El Nino, but no significant overall trend, corresponding to an increase in Brewer-Dobson circulation of 1.4±3.5%/decade. There remains an unexplained cycle of amplitude and period at least 15% and 17 years, with minimum speed in about 2000.
Resumo:
Well-resolved air–sea interactions are simulated in a new ocean mixed-layer, coupled configuration of the Met Office Unified Model (MetUM-GOML), comprising the MetUM coupled to the Multi-Column K Profile Parameterization ocean (MC-KPP). This is the first globally coupled system which provides a vertically resolved, high near-surface resolution ocean at comparable computational cost to running in atmosphere-only mode. As well as being computationally inexpensive, this modelling framework is adaptable– the independent MC-KPP columns can be applied selectively in space and time – and controllable – by using temperature and salinity corrections the model can be constrained to any ocean state. The framework provides a powerful research tool for process-based studies of the impact of air–sea interactions in the global climate system. MetUM simulations have been performed which separate the impact of introducing inter- annual variability in sea surface temperatures (SSTs) from the impact of having atmosphere–ocean feedbacks. The representation of key aspects of tropical and extratropical variability are used to assess the performance of these simulations. Coupling the MetUM to MC-KPP is shown, for example, to reduce tropical precipitation biases, improve the propagation of, and spectral power associated with, the Madden–Julian Oscillation and produce closer-to-observed patterns of springtime blocking activity over the Euro-Atlantic region.
Resumo:
A statistical-dynamical downscaling method is used to estimate future changes of wind energy output (Eout) of a benchmark wind turbine across Europe at the regional scale. With this aim, 22 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble are considered. The downscaling method uses circulation weather types and regional climate modelling with the COSMO-CLM model. Future projections are computed for two time periods (2021–2060 and 2061–2100) following two scenarios (RCP4.5 and RCP8.5). The CMIP5 ensemble mean response reveals a more likely than not increase of mean annual Eout over Northern and Central Europe and a likely decrease over Southern Europe. There is some uncertainty with respect to the magnitude and the sign of the changes. Higher robustness in future changes is observed for specific seasons. Except from the Mediterranean area, an ensemble mean increase of Eout is simulated for winter and a decreasing for the summer season, resulting in a strong increase of the intra-annual variability for most of Europe. The latter is, in particular, probable during the second half of the 21st century under the RCP8.5 scenario. In general, signals are stronger for 2061–2100 compared to 2021–2060 and for RCP8.5 compared to RCP4.5. Regarding changes of the inter-annual variability of Eout for Central Europe, the future projections strongly vary between individual models and also between future periods and scenarios within single models. This study showed for an ensemble of 22 CMIP5 models that changes in the wind energy potentials over Europe may take place in future decades. However, due to the uncertainties detected in this research, further investigations with multi-model ensembles are needed to provide a better quantification and understanding of the future changes.
Resumo:
The variability of populations over time is positively associated with their risk of local extinction. Previous work has shown that populations at the high-latitude boundary of species’ ranges show higher inter-annual variability, consistent with increased sensitivity and exposure to adverse climatic conditions. However, patterns of population variability at both high- and low-latitude species range boundaries have not yet been concurrently examined. Here, we assess the inter-annual population variability of 28 butterfly species between 1994 and 2009 at 351 and 18 sites in the United Kingdom and Catalonia, Spain, respectively. Local population variability is examined with respect to the position of the species’ bioclimatic envelopes (i.e. whether the population falls within areas of the ‘core’ climatic suitability or is a climatically ‘marginal’ population), and in relation to local landscape heterogeneity, which may influence these range location – population dynamic relationships. We found that butterfly species consistently show latitudinal gradients in population variability, with increased variability in the more northerly UK. This pattern is even more marked for southerly distributed species with ‘marginal’ climatic suitability in the UK but ‘core’ climatic suitability in Catalonia. In addition, local landscape heterogeneity did influence these range location – population dynamic relationships. Habitat heterogeneity was associated with dampened population dynamics, especially for populations in the UK. Our results suggest that promoting habitat heterogeneity may promote the persistence of populations at high-latitude range boundaries, which may potentially aid northwards expansion under climate warming. We did not find evidence that population variability increases towards southern range boundaries. Sample sizes for this region were low, but there was tentative evidence, in line with previous ecological theory, that local landscape heterogeneity may promote persistence in these retracting low-latitude range boundary populations.
Resumo:
Identifying the signature of global warming in the world's oceans is challenging because low frequency circulation changes can dominate local temperature changes. The IPCC fourth assessment reported an average ocean heating rate of 0.21 ± 0.04 Wm−2 over the period 1961–2003, with considerable spatial, interannual and inter-decadal variability. We present a new analysis of millions of ocean temperature profiles designed to filter out local dynamical changes to give a more consistent view of the underlying warming. Time series of temperature anomaly for all waters warmer than 14°C show large reductions in interannual to inter-decadal variability and a more spatially uniform upper ocean warming trend (0.12 Wm−2 on average) than previous results. This new measure of ocean warming is also more robust to some sources of error in the ocean observing system. Our new analysis provides a useful addition for evaluation of coupled climate models, to the traditional fixed depth analyses.
Resumo:
Holocene silts (salt marshes) and highest intertidal-supratidal peats are superbly exposed on a 15 kin coastal transect which reveals two laterally extensive units of annually banded silts (Beds 3, 7) associated with three transgressive-regressive silt-peat cycles (early sixth-early fourth millennium BC). Bed 3 in places is concordantly and gradationally related to peats above and below, but in others transgresses older strata. Bed 7 also grades up into peat, but everywhere overlies a discordance. The banding in Bed 3 at three main and two minor sites was resolved and characterized texturally at high-resolution (2.5/5 mm contiguous slices) using laser granulometry (LS230 with PIDS) and a comprehensive scheme of data-assessment. Most of Bed 3 formed very rapidly, at peak values of several tens of millimetres annually, in accordance with modelled effects of sea-level fluctuations on mature marshes (bed concordant and gradational) and on marshes growing up after coastal erosion and retreat (bed with discordant base). Using data from the modern Severn Estuary, the textural contrast within bands, and its variation between bands, points to a variable but overall milder mid-Holocene climate than today. The inter-annual variability affected marsh dynamics, as shown by the behaviour of the finely divided plant tissues present. Given local calibration, the methodology is applicable to other tidal systems with banded silts in Britain and mainland northwest Europe. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
ATSR-2 active fire data from 1996 to 2000, TRMM VIRS fire counts from 1998 to 2000 and burn scars derived from SPOT VEGETATION ( the Global Burnt Area 2000 product) were mapped for Peru and Bolivia to analyse the spatial distribution of burning and its intra- and inter-annual variability. The fire season in the region mainly occurs between May and October; though some variation was found between the six broad habitat types analysed: desert, grassland, savanna, dry forest, moist forest and yungas (the forested valleys on the eastern slope of the Andes). Increased levels of burning were generally recorded in ATSR-2 and TRMM VIRS fire data in response to the 1997/1998 El Nino, but in some areas the El Nino effect was masked by the more marked influences of socio-economic change on land use and land cover. There were differences between the three global datasets: ATSR-2 under-recorded fires in ecosystems with low net primary productivities. This was because fires are set during the day in this region and, when fuel loads are low, burn out before the ATSR-2 overpass in the region which is between 02.45 h and 03.30 h. TRMM VIRS was able to detect these fires because its overpasses cover the entire diurnal range on a monthly basis. The GBA2000 product has significant errors of commission (particularly areas of shadow in the well-dissected eastern Andes) and omission (in the agricultural zone around Santa Cruz, Bolivia and in north-west Peru). Particular attention was paid to biomass burning in high-altitude grasslands, where fire is an important pastoral management technique. Fires and burn scars from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for a range of years between 1987 and 2000 were mapped for areas around Parque Nacional Rio Abiseo (Peru) and Parque Nacional Carrasco (Bolivia). Burn scars mapped in the grasslands of these two areas indicate far more burning had taken place than either the fires or the burn scars derived from global datasets. Mean scar sizes are smaller and have a smaller range in size between years the in the study area in Peru (6.6-7.1 ha) than Bolivia (16.9-162.5 ha). Trends in biomass burning in the two highland areas can be explained in terms of the changing socio-economic environments and impacts of conservation. The mismatch between the spatial scale of biomass burning in the high-altitude grasslands and the sensors used to derive global fire products means that an entire component of the fire regime in the region studied is omitted, despite its importance in the farming systems on the Andes.
Resumo:
The 23S ribosomal RNA (rRNA) gene has been sequenced in strains of the fish pathogens Photobacterium damselae subsp. damselae (ATCC 33539) and subsp. piscicida (ATCC 29690), showing that 3 nucleotide positions are clearly different between subspecies. In addition, the 5S rRNA gene plus the intergenic spacer region between the 23S and 5S rRNA genes (ITS-2) were amplified, cloned and sequenced for the 2 reference strains as well as the field isolates RG91 (subsp. damselae) and DI21 (subsp. piscicida). A 100% similarity was found for the consensus 5S rRNA gene sequence in the 2 subspecies, although some microheterogeneity was detected as inter-cistronic variability within the same chromosome. Sequence analysis of the spacer region between the 23S and 5S rRNA genes revealed 2 conserved and 3 variable nucleotide sequence blocks, and 4 different modular organizations were found. The ITS-2 spacer region exhibited both inter-subspecies and inter-cistronic polymorphism, with a mosaic-like structure. The EMBL accession numbers for the 23S, 5S and ITS-2 sequences are: P. damselae subsp. piscicida 5S gene (AJ274379), P. damselae subsp. damselae 23S gene (Y18520), subsp. piscicida 23S gene (Y17901), R damselae subsp. piscicida ITS-2 (AJ250695, AJ250696), P. damselae subsp. damselae ITS-2 (AJ250697, AJ250698).
Resumo:
Dysregulation of lipid and glucose metabolism in the postprandial state are recognised as important risk factors for the development of cardiovascular disease and type 2 diabetes. Our objective was to create a comprehensive, standardised database of postprandial studies to provide insights into the physiological factors that influence postprandial lipid and glucose responses. Data were collated from subjects (n = 467) taking part in single and sequential meal postprandial studies conducted by researchers at the University of Reading, to form the DISRUPT (DIetary Studies: Reading Unilever Postprandial Trials) database. Subject attributes including age, gender, genotype, menopausal status, body mass index, blood pressure and a fasting biochemical profile, together with postprandial measurements of triacylglycerol (TAG), non-esterified fatty acids, glucose, insulin and TAG-rich lipoprotein composition are recorded. A particular strength of the studies is the frequency of blood sampling, with on average 10-13 blood samples taken during each postprandial assessment, and the fact that identical test meal protocols were used in a number of studies, allowing pooling of data to increase statistical power. The DISRUPT database is the most comprehensive postprandial metabolism database that exists worldwide and preliminary analysis of the pooled sequential meal postprandial dataset has revealed both confirmatory and novel observations with respect to the impact of gender and age on the postprandial TAG response. Further analysis of the dataset using conventional statistical techniques along with integrated mathematical models and clustering analysis will provide a unique opportunity to greatly expand current knowledge of the aetiology of inter-individual variability in postprandial lipid and glucose responses.