63 resultados para Intelligent Driver Training System
em CentAUR: Central Archive University of Reading - UK
Resumo:
In the U.K., dental students require to perform training and practice on real human tissues at the very early stage of their courses. Currently, the human tissues, such as decayed teeth, are mounted in a human head like physical model. The problems with these models in teaching are; (1) every student operates on tooth, which are always unique; (2) the process cannot be recorded for examination purposes and (3) same training are not repeatable. The aim of the PHATOM Project is to develop a dental training system using Haptic technology. This paper documents the project background, specification, research and development of the first prototype system. It also discusses the research in the visual display, haptic devices and haptic rendering. This includes stereo vision, motion parallax, volumetric modelling, surface remapping algorithms as well as analysis design of the system. A new volumetric to surface model transformation algorithm is also introduced. This paper includes the future work on the system development and research.
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a novel design of a virtual dental training system (hapTEL) using haptic technology. The system allows dental students to learn and practice procedures such as dental drilling, caries removal and cavity preparation for tooth restoration. This paper focuses on the hardware design, development and evaluation aspects in relation to the dental training and educational requirements. Detailed discussions on how the system offers dental students a natural operational position are documented. An innovative design of measuring and connecting the dental tools to the haptic device is also shown. Evaluation of the impact on teaching and learning is discussed.
Resumo:
Building Management Systems (BMS) are widely adopted in modern buildings around the world in order to provide high-quality building services, and reduce the running cost of the building. However, most BMS are functionality-oriented and do not consider user personalization. The aim of this research is to capture and represent building management rules using organizational semiotics methods. We implement Semantic Analysis, which determines semantic units in building management and their relationship patterns of behaviour, and Norm Analysis, which extracts and specifies the norms that establish how and when these management actions occur. Finally, we propose a multi-agent framework for norm based building management. This framework contributes to the design domain of intelligent building management system by defining a set of behaviour patterns, and the norms that govern the real-time behaviour in a building.
Resumo:
In high speed manufacturing systems, continuous operation is desirable, with minimal disruption for repairs and service. An intelligent diagnostic monitoring system, designed to detect developing faults before catastrophic failure, or prior to undesirable reduction in output quality, is a good means of achieving this. Artificial neural networks have already been found to be of value in fault diagnosis of machinery. The aim here is to provide a system capable of detecting a number of faults, in order that maintenance can be scheduled in advance of sudden failure, and to reduce the necessity to replace parts at intervals based on mean time between failures. Instead, parts will need to be replaced only when necessary. Analysis of control information in the form of position error data from two servomotors is described.
Resumo:
Intelligent viewing systems are required if efficient and productive teleoperation is to be applied to dynamic manufacturing environments. These systems must automatically provide remote views to an operator which assist in the completion of the task. This assistance increases the productivity of the teleoperation task if the robot controller is responsive to the unpredictable dynamic evolution of the workcell. Behavioral controllers can be utilized to give reactive 'intelligence.' The inherent complex structure of current systems, however, places considerable time overheads on any redesign of the emergent behavior. In industry, where the remote environment and task frequently change, this continual redesign process becomes inefficient. We introduce a novel behavioral controller, based on an 'ego-behavior' architecture, to command an active camera (a camera mounted on a robot) within a remote workcell. Using this ego-behavioral architecture the responses from individual behaviors are rapidly combined to produce an 'intelligent' responsive viewing system. The architecture is single-layered, each behavior being autonomous with no explicit knowledge of the number, description or activity of other behaviors present (if any). This lack of imposed structure decreases the development time as it allows each behavior to be designed and tested independently before insertion into the architecture. The fusion mechanism for the behaviors provides the ability for each behavior to compete and/or co-operate with other behaviors for full or partial control of the viewing active camera. Each behavior continually reassesses this degree of competition or co-operation by measuring its own success in controlling the active camera against pre-defined constraints. The ego-behavioral architecture is demonstrated through simulation and experimentation.
Resumo:
We have discovered a novel approach of intrusion detection system using an intelligent data classifier based on a self organizing map (SOM). We have surveyed all other unsupervised intrusion detection methods, different alternative SOM based techniques and KDD winner IDS methods. This paper provides a robust designed and implemented intelligent data classifier technique based on a single large size (30x30) self organizing map (SOM) having the capability to detect all types of attacks given in the DARPA Archive 1999 the lowest false positive rate being 0.04 % and higher detection rate being 99.73% tested using full KDD data sets and 89.54% comparable detection rate and 0.18% lowest false positive rate tested using corrected data sets.