14 resultados para Intelligence framework

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain.Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications,limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain. Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications, limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. This paper presents the User-Intimate Requirements Hierarchy Resolution Framework (UI-REF) based on earlier work (Badii 1997-2008) to optimise the requirements engineering process particularly to support userintimate interactive systems co-design. The stages of the UI- EF framework for requirements resolution-and-prioritisation are described. UI-REF has been established to ensure that the most-deeply-valued needs of the majority of stakeholders are elicited and ranked, and the root rationale for requirements evolution is trace-able and contextualised so as to help resolve stakeholder conflicts. UI-REF supports the dynamically evolving requirements of the users in the context of digital economy as under-pinned by online service provisioning. Requirements prioritisation in UI-REF is fully resolved while a promotion path for lower priority requirements is delineated so as to ensure that as the requirements evolve so will their resolution and prioritisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a proposed new approach to the Computer Network Security Intrusion Detection Systems (NIDS) application domain knowledge processing focused on a topic map technology-enabled representation of features of the threat pattern space as well as the knowledge of situated efficacy of alternative candidate algorithms for pattern recognition within the NIDS domain. Thus an integrative knowledge representation framework for virtualisation, data intelligence and learning loop architecting in the NIDS domain is described together with specific aspects of its deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprinting is a well known approach for identifying multimedia data without having the original data present but what amounts to its essence or ”DNA”. Current approaches show insufficient deployment of three types of knowledge that could be brought to bear in providing a finger printing framework that remains effective, efficient and can accommodate both the whole as well as elemental protection at appropriate levels of abstraction to suit various Foci of Interest (FoI) in an image or cross media artefact. Thus our proposed framework aims to deliver selective composite fingerprinting that remains responsive to the requirements for protection of whole or parts of an image which may be of particularly interest and be especially vulnerable to attempts at rights violation. This is powerfully aided by leveraging both multi-modal information as well as a rich spectrum of collateral context knowledge including both image-level collaterals as well as the inevitably needed market intelligence knowledge such as customers’ social networks interests profiling which we can deploy as a crucial component of our Fingerprinting Collateral Knowledge. This is used in selecting the special FoIs within an image or other media content that have to be selectively and collaterally protected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the essential needs to implement a successful e-Government web application is security. Web application firewalls (WAF) are the most important tool to secure web applications against the increasing number of web application attacks nowadays. WAFs work in different modes depending on the web traffic filtering approach used, such as positive security mode, negative security mode, session-based mode, or mixed modes. The proposed WAF, which is called (HiWAF), is a web application firewall that works in three modes: positive, negative and session based security modes. The new approach that distinguishes this WAF among other WAFs is that it utilizes the concepts of Artificial Intelligence (AI) instead of regular expressions or other traditional pattern matching techniques as its filtering engine. Both artificial neural networks and fuzzy logic concepts will be used to implement a hybrid intelligent web application firewall that works in three security modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accessing information, which is spread across multiple sources, in a structured and connected way, is a general problem for enterprises. A unified structure for knowledge representation is urgently needed to enable integration of heterogeneous information resources. Topic Maps seem to be a solution for this problem. The Topic Map technology enables connecting information, through concepts and relationships, and their occurrences across multiple systems. In this paper, we address this problem by describing a framework built on topic maps, to support the current need of knowledge management. New approaches for information integration, intelligent search and topic map exploration are introduced within this framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprinting is a well known approach for identifying multimedia data without having the original data present but instead what amounts to its essence or 'DNA'. Current approaches show insufficient deployment of various types of knowledge that could be brought to bear in providing a fingerprinting framework that remains effective, efficient and can accommodate both the whole as well as elemental protection at appropriate levels of abstraction to suit various Zones of Interest (ZoI) in an image or cross media artefact. The proposed framework aims to deliver selective composite fingerprinting that is powerfully aided by leveraging both multi-modal information as well as a rich spectrum of collateral context knowledge including both image-level collaterals and also the inevitably needed market intelligence knowledge such as customers' social networks interests profiling which we can deploy as a crucial component of our fingerprinting collateral knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Today marketers operate in globalised markets, planning new ways to engage with domestic and foreign customers alike. While there is a greater need to understand these two customer groups, few studies examine the impact of customer engagement tactics on the two customer groups, focusing on their perceptual differences. Even less attention is given to customer engagement tactics in a cross-cultural framework. In this research, the authors investigate customers in China and UK, aiming to compare their perceptual differences on the impact of multiple customer engagement tactics. Design/methodology/approach – Using a quantitative approach with 286 usable responses from China and the UK obtained through a combination of person-administered survey and computer-based survey screening process, the authors test a series of hypotheses to distinguish across-cultural differences. Findings – Findings show that the collectivists (Chinese customers) perceive customer engagement tactics differently than the individualists (UK customers). The Chinese customers are more sensitive to price and reputation, whereas the UK customers respond more strongly to service, communication and customisation. Chinese customers’ concerns with extensive price and reputation comparisons may be explained by their awareness towards face (status), increased self-expression and equality. Practical implications – The findings challenge the conventional practice of using similar customer engagement tactics for a specific market place with little concern for multiple cultural backgrounds. The paper proposes strategies for marketers facing challenges in this globalised context. Originality/value – Several contributions have been made to the literatures. First, the study showed the effects of culture on the customers’ perceptual differences. Second, the study provided more information to clarify customers’ different reactions towards customer engagement tactics, highlighted by concerns towards face and status. Third, the study provided empirical evidence to support the use of multiple customer engagement tactics to the across cultural studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.