11 resultados para Integration, Functional

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases (HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY6, aided by its specific phosphatase, the bifunctional kinase CheA3, acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB2 connects the cytoplasmic cluster kinase CheA3 with the polar localised kinase CheA2, and allows CheA3-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA3 to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building services are worth about 2% GDP and are essential for the effective and efficient operations of the building. It is increasingly recognised that the value of a building is related to the way it supports the client organisation’s ongoing business operations. Building services are central to the functional performance of buildings and provide the necessary conditions for health, well-being, safety and security of the occupants. They frequently comprise several technologically distinct sub-systems and their design and construction requires the involvement of numerous disciplines and trades. Designers and contractors working on the same project are frequently employed by different companies. Materials and equipment is supplied by a diverse range of manufacturers. Facilities managers are responsible for operation of the building service in use. The coordination between these participants is crucially important to achieve optimum performance, but too often is neglected. This leaves room for serious faults. The need for effective integration is important. Modern technology offers increasing opportunities for integrated personal-control systems for lighting, ventilation and security as well as interoperability between systems. Opportunities for a new mode of systems integration are provided by the emergence of PFI/PPP procurements frameworks. This paper attempts to establish how systems integration can be achieved in the process of designing, constructing and operating building services. The essence of the paper therefore is to envisage the emergent organisational responses to the realisation of building services as an interactive systems network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this review we evaluate the cognitive and neural effects of positive and negative mood on executive function. Mild manipulations of negative mood appear to have little effect on cognitive control processes, whereas positive mood impairs aspects of updating, planning and switching. These cognitive effects may be linked to neurochemistry: with positive mood effects mediated by dopamine while negative mood effects may be mediated by serotonin levels. Current evidence on the effects of mood on regional brain activity during executive functions, indicates that the prefrontal cortex is a recurrent site of integration between mood and cognition. We conclude that there is a disparity between the importance of this topic and awareness of how mood affects, executive functions in the brain. Most behavioural and neuroimaging studies of executive function in normal samples do not explore the potential role of variations in mood, yet the evidence we outline indicates that even mild fluctuations in mood can have a significant influence on neural activation and cognition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain activity can be measured non-invasively with functional imaging techniques. Each pixel in such an image represents a neural mass of about 105 to 107 neurons. Mean field models (MFMs) approximate their activity by averaging out neural variability while retaining salient underlying features, like neurotransmitter kinetics. However, MFMs incorporating the regional variability, realistic geometry and connectivity of cortex have so far appeared intractable. This lack of biological realism has led to a focus on gross temporal features of the EEG. We address these impediments and showcase a "proof of principle" forward prediction of co-registered EEG/fMRI for a full-size human cortex in a realistic head model with anatomical connectivity, see figure 1. MFMs usually assume homogeneous neural masses, isotropic long-range connectivity and simplistic signal expression to allow rapid computation with partial differential equations. But these approximations are insufficient in particular for the high spatial resolution obtained with fMRI, since different cortical areas vary in their architectonic and dynamical properties, have complex connectivity, and can contribute non-trivially to the measured signal. Our code instead supports the local variation of model parameters and freely chosen connectivity for many thousand triangulation nodes spanning a cortical surface extracted from structural MRI. This allows the introduction of realistic anatomical and physiological parameters for cortical areas and their connectivity, including both intra- and inter-area connections. Proper cortical folding and conduction through a realistic head model is then added to obtain accurate signal expression for a comparison to experimental data. To showcase the synergy of these computational developments, we predict simultaneously EEG and fMRI BOLD responses by adding an established model for neurovascular coupling and convolving "Balloon-Windkessel" hemodynamics. We also incorporate regional connectivity extracted from the CoCoMac database [1]. Importantly, these extensions can be easily adapted according to future insights and data. Furthermore, while our own simulation is based on one specific MFM [2], the computational framework is general and can be applied to models favored by the user. Finally, we provide a brief outlook on improving the integration of multi-modal imaging data through iterative fits of a single underlying MFM in this realistic simulation framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers (“biomarkers”) of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. Methods CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10–20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2–10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. Discussion From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants) has been evaluated at baseline. The clinical characteristics of this cohort are similar to other studies of MDD. Recruitment at all sites is ongoing to a target sample of 290 participants. CAN-BIND will identify biomarkers of treatment response in MDD through extensive clinical, molecular, and imaging assessments, in order to improve treatment practice and clinical outcomes. It will also create an innovative, robust platform and database for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to regulate emotion is crucial to promote well-being. Evidence suggests that the medial prefrontal cortex (mPFC) and adjacent anterior cingulate (ACC) modulate amygdala activity during emotion regulation. Yet less is known about whether the amygdala-mPFC circuit is linked with regulation of the autonomic nervous system and whether the relationship differs across the adult lifespan. The current study tested the hypothesis that heart rate variability (HRV) reflects the strength of mPFC-amygdala interaction across younger and older adults. We recorded participants’ heart rates at baseline and examined whether baseline HRV was associated with amygdala-mPFC functional connectivity during rest. We found that higher HRV was associated with stronger functional connectivity between the amygdala and the mPFC during rest across younger and older adults. In addition to this age-invariant pattern, there was an age-related change, such that greater HRV was linked with stronger functional connectivity between amygdala and ventrolateral PFC (vlPFC) in younger than in older adults. These results are in line with past evidence that vlPFC is involved in emotion regulation especially in younger adults. Taken together, our results support the neurovisceral integration model and suggest that higher heart rate variability is associated with neural mechanisms that support successful emotional regulation across the adult lifespan.