5 resultados para Integrable Quantum-systems

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss the problem of globally computing sub-Riemannian curves on the Euclidean group of motions SE(3). In particular, we derive a global result for special sub-Riemannian curves whose Hamiltonian satisfies a particular condition. In this paper, sub-Riemannian curves are defined in the context of a constrained optimal control problem. The maximum principle is then applied to this problem to yield an appropriate left-invariant quadratic Hamiltonian. A number of integrable quadratic Hamiltonians are identified. We then proceed to derive convenient expressions for sub-Riemannian curves in SE(3) that correspond to particular extremal curves. These equations are then used to compute sub-Riemannian curves that could potentially be used for motion planning of underwater vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parallel formulation of an algorithm for the histogram computation of n data items using an on-the-fly data decomposition and a novel quantum-like representation (QR) is developed. The QR transformation separates multiple data read operations from multiple bin update operations thereby making it easier to bind data items into their corresponding histogram bins. Under this model the steps required to compute the histogram is n/s + t steps, where s is a speedup factor and t is associated with pipeline latency. Here, we show that an overall speedup factor, s, is available for up to an eightfold acceleration. Our evaluation also shows that each one of these cells requires less area/time complexity compared to similar proposals found in the literature.