21 resultados para Institutional interaction
em CentAUR: Central Archive University of Reading - UK
Resumo:
Interactions using a standard computer mouse can be particularly difficult for novice and older adult users. Tasks that involve positioning the mouse over a target and double-clicking to initiate some action can be a real challenge for many users. Hence, this paper describes a study that investigates the double-click interactions of older and younger adults and presents data that can help inform the development of methods of assistance. Twelve older adults (mean age = 63.9 years) and 12 younger adults (mean age = 20.8 years) performed click and double-click target selections with a computer mouse. Initial results show that older users make approximately twice as many errors as younger users when attempting double-clicks. For both age groups, the largest proportion of errors was due to difficulties with keeping the cursor steady between button presses. Compared with younger adults, older adults experienced more difficulties with performing two button presses within a required time interval. Understanding these interactions better is a step towards improving accessibility, and may provide some suggestions for future directions of research in this area.
Resumo:
This study investigates the change of the El Niño–Southern Oscillation (ENSO)-South Asian summer monsoon interaction in response to a weakened Atlantic thermohaline circulation (THC) by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the weakened THC leads to intensified ENSO-South Asian summer monsoon relationship and enhanced South Asian summer monsoon interannual variability. Furthermore, it is suggested that this intensification of the ENSO-monsoon relationship is likely due to the enhanced ENSO variability induced by the weakened THC. This study indicates that the low frequency fluctuation of Atlantic SSTs might have an influence on South Asian summer monsoon interannual variability and the ENSO-monsoon interaction, and suggests a nonlocal mechanism for the observed decadal-multidecadal modulation of ENSO-monsoon relationship.
Resumo:
This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.
Resumo:
We review briefly recent progress on understanding the role of surface waves on the marine atmospheric boundary layer and the ocean mixed layer and give a global perspective on these processes by analysing ERA-40 data. Ocean surface waves interact with the marine atmospheric boundary layer in two broad regimes: (i) the conventional wind-driven wave regime, when fast winds blow over slower moving waves, and (ii) a wave-driven wind regime when long wavelength swell propagates under low winds, and generates a wave-driven jet in the lower part of the marine boundary layer. Analysis of ERA-40 data indicates that the wave-driven wind regime is as prevalent as the conventional wind-driven regime. Ocean surface waves also change profoundly mixing in the ocean mixed layer through generation of Langmuir circulation. Results from large-eddy simulation are used here to develop a scaling for the resulting Langmuir turbulence, which is a necessary step in developing a parametrization of the process. ERA-40 data is then used to show that the Langmuir regime is the predominant regime over much of the global ocean, providing a compelling motivation for parameterising this process in ocean general circulation models.
Resumo:
This paper describes the development and first results of the “Community Integrated Assessment System” (CIAS), a unique multi-institutional modular and flexible integrated assessment system for modelling climate change. Key to this development is the supporting software infrastructure, SoftIAM. Through it, CIAS is distributed between the community of institutions which has each contributed modules to the CIAS system. At the heart of SoftIAM is the Bespoke Framework Generator (BFG) which enables flexibility in the assembly and composition of individual modules from a pool to form coupled models within CIAS, and flexibility in their deployment onto the available software and hardware resources. Such flexibility greatly enhances modellers’ ability to re-configure the CIAS coupled models to answer different questions, thus tracking evolving policy needs. It also allows rigorous testing of the robustness of IA modelling results to the use of different component modules representing the same processes (for example, the economy). Such processes are often modelled in very different ways, using different paradigms, at the participating institutions. An illustrative application to the study of the relationship between the economy and the earth’s climate system is provided.
Resumo:
By the turn of the twenty-first century, UNDP had embraced a new form of funding based on ‘cost-sharing’, with this source accounting for 51 per cent of the organisation’s total expenditure worldwide in 2000. Unlike the traditional donor - recipient relationship so common with development projects, the new cost-sharing modality has created a situation whereby UNDP local offices become ‘subcontractors’ and agencies of the recipient countries become ‘clients’. This paper explores this transition in the context of Brazil, focusing on how the new modality may have compromised UNDP’s ability to promote Sustainable Human Development, as established in its mandate. The great enthusiasm for this modality within the UN system and its potential application to other developing countries increase the importance of a systematic assessment of its impact and developmental consequences.
Resumo:
The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.
Resumo:
Partnerships are complex, diverse and subtle relationships, the nature of which changes with time, but they are vital for the functioning of the development chain. This paper reviews the meaning of partnership between development institutions as well as some of the main approaches taken to analyse the relationships. The latter typically revolve around analyses based on power, discourse, interdependence and functionality. The paper makes the case for taking a multianalytical approach to understanding partnership but points out three problem areas: identifying acceptable/unacceptable trade-offs between characteristics of partnership, the analysis of multicomponent partnerships (where one partner has a number of other partners) and the analysis of long-term partnership. The latter is especially problematic for long-term partnerships between donors and field agencies that share an underlying commitment based on religious beliefs. These problems with current methods of analysing partnership are highlighted by focusing upon the Catholic Church-based development chain, linking donors in the North (Europe) and their field partners in the South (Abuja Ecclesiastical Province, Nigeria). It explores a narrated history of a relationship with a single donor spanning 35 years from the perspective of one partner (the field agency).
Resumo:
Previous studies using the Hadley Centre coupled model (HadCM3) have shown that the islands of the Maritime Continent act as an unrealistic block to the eastward propagation of the Madden-Julian Oscillation (MJO). This blocking effect is investigated using a simplified, aqua-planet version of this GCM, with various idealized configurations of the Maritime Continent islands placed on the equator, and an MJO-like convective signal forced by a propagating sea-surface temperature anomaly dipole. Results suggest that it is the orography of the islands, rather than the presence of the islands themselves, which results in the blocking of the MJO. Although the peak elevation of the orography in the GCM is very much lower than in reality, it appears to act as effective block to the eastward propagation of the low-level Kelvin wave signal which accompanies the MJO. In particular, the representation of Sumatra in the GCM, as a north-south oriented ridge straddling the equator, seems to be particularly effective at blocking the Kelvin wave signal, which in a full GCM would result in the weakening or complete extinction of the MJO signal to the east of the Maritime Continent.