180 resultados para Inner Plexiform Layer

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kelvin Helmholtz (KH) problem, with zero stratification, is examined as a limiting case of the Rayleigh model of a single shear layer whose width tends to zero. The transition of the Rayleigh modal dispersion relation to the KH one, as well as the disappearance of the supermodal transient growth in the KH limit, are both rationalized from the counterpropagating Rossby wave perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between extratropical cyclones and the underlying boundary layer has been a topic of recent discussion in papers by Adamson et al (2006) and Beare (2007). Their results emphasise different mechanisms through which the boundary layer dynamics may modify the growth of a baroclinic cyclone. By using different sea-surface temperature distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms appear to be acting within a single simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dry three-dimensional baroclinic life cycle model is used to investigate the role of turbulent fluxes of heat and momentum within the boundary layer on mid-latitude cyclones. Simulations are performed of life cycles for two basic states, both with and without turbulent fluxes. The different basic states produce cyclones with contrasting frontal and mesoscale-flow structures. The analysis focuses on the generation of potential-vorticity (PV) in the boundary layer and its subsequent transport into the free troposphere. The dynamic mechanism through which friction mitigates a barotropic vortex is that of Ekman pumping. This has often been assumed to be also the dominant mechanism for baroclinic developments. The PV framework highlights an additional, baroclinic mechanism. Positive PV is generated baroclinically due to friction to the north-east of a surface low and is transported out of the boundary layer by a cyclonic conveyor belt flow. The result is an anomaly of increased static stability in the lower troposphere which restricts the growth of the baroclinic wave. The reduced coupling between lower and upper levels can be sufficient to change the character of the upper-level evolution of the mature wave. The basic features of the baroclinic damping mechanism are robust for different frontal structures, with and without turbulent heat fluxes, and for the range of surface roughness found over the oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often assumed that ventilation of the atmospheric boundary layer is weak in the absence of fronts, but is this always true? In this paper we investigate the processes responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May 2005 using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, turbulent mixing followed by large-scale ascent, a sea breeze circulation and coastal outflow. Vertical distributions of tracer are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. Coastal outflow and the sea breeze circulation were found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2 km. A combination of coastal outflow, the sea breeze circulation, turbulent mixing and large-scale ascent ventilated 46% of the boundary layer tracer, of which 10% was above 2 km. Finally, coastal outflow, the sea breeze circulation, turbulent mixing, large-scale ascent and shallow convection together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2 km. Hence this study shows that significant ventilation of the boundary layer can occur in the absence of fronts (and thus during high-pressure events). Turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of surface waves and an applied wind stress is studied in an ensemble of large eddy simulations to investigate the nature of deeply penetrating jets into an unstratified mixed layer. The influence of a steady monochromatic surface wave propagating parallel to the wind direction is parameterized using the wave-filtered Craik-Leibovich equations. Tracer trajectories and instantaneous downwelling velocities reveal classic counterrotating Langmuir rolls. The associated downwelling jets penetrate to depths in excess of the wave's Stokes depth scale, δs. Qualitative evidence suggests the depth of the jets is controlled by the Ekman depth scale. Analysis of turbulent kinetic energy (tke) budgets reveals a dynamical distinction between Langmuir turbulence and shear-driven turbulence. In the former, tke production is dominated by Stokes shear and a vertical flux term transports tke to a depth where it is dissipated. In the latter, tke production is from the mean shear and is locally balanced by dissipation. We define the turbulent Langmuir number Lat = (v*/Us)0.5 (v* is the ocean's friction velocity and Us is the surface Stokes drift velocity) and a turbulent anisotropy coefficient Rt = /( + ). The transition between shear-driven and Langmuir turbulence is investigated by varying external wave parameters δs and Lat and by diagnosing Rt and the Eulerian mean and Stokes shears. When either Lat or δs are sufficiently small the Stokes shear dominates the mean shear and the flow is preconditioned to Langmuir turbulence and the associated deeply penetrating jets.