70 resultados para Initial Pb
em CentAUR: Central Archive University of Reading - UK
Resumo:
A number of recent papers in the atmospheric science literature have suggested that a dynamical link exists between the stratosphere and troposphere. Numerical modelling studies have shown that the troposphere has a time-mean response to changes to the stratospheric climatological state. In this study the response of the troposphere to an imposed transient stratospheric change is examined. The study uses a high horizontal and vertical resolution numerical weather-prediction model. Experiments compare the tropospheric forecasts of two medium-range forecast ensembles which have identical tropospheric initial conditions and different stratospheric initial conditions. In three case studies described here, stratospheric initial conditions have a statistically significant impact on the tropospheric flow. The mechanism for this change involves, in its most basic step, a change to tropospheric synoptic-scale systems. A consistent change to the tropospheric synoptic-scale systems occurs in response to the stratospheric initial conditions. The aggregated impact of changes to individual synoptic systems maps strongly onto the structure of the Arctic Oscillation, particularly over the North Atlantic storm track. The relationship between the stratosphere and troposphere, while apparent in Arctic Oscillation diagnostics, does not occur on coherent, hemispheric scales.
Resumo:
In the Eady model, where the meridional potential vorticity (PV) gradient is zero, perturbation energy growth can be partitioned cleanly into three mechanisms: (i) shear instability, (ii) resonance, and (iii) the Orr mechanism. Shear instability involves two-way interaction between Rossby edge waves on the ground and lid, resonance occurs as interior PV anomalies excite the edge waves, and the Orr mechanism involves only interior PV anomalies. These mechanisms have distinct implications for the structural and temporal linear evolution of perturbations. Here, a new framework is developed in which the same mechanisms can be distinguished for growth on basic states with nonzero interior PV gradients. It is further shown that the evolution from quite general initial conditions can be accurately described (peak error in perturbation total energy typically less than 10%) by a reduced system that involves only three Rossby wave components. Two of these are counterpropagating Rossby waves—that is, generalizations of the Rossby edge waves when the interior PV gradient is nonzero—whereas the other component depends on the structure of the initial condition and its PV is advected passively with the shear flow. In the cases considered, the three-component model outperforms approximate solutions based on truncating a modal or singular vector basis.
Resumo:
New data show that island arc rocks have (Pb-210/Ra-226)(o) ratios which range from as low as 0.24 up to 2.88. In contrast, (Ra-22S/Th-232) appears always within error of I suggesting that the large Ra-226-excesses observed in arc rocks were generated more than 30 years ago. This places a maximum estimate on melt ascent velocities of around 4000 m/year and provides further confidence that the Ra-226 excesses reflect deep (source) processes rather than shallow level alteration or seawater contamination. Conversely, partial melting must have occurred more than 30 years prior to eruption. The Pb-210 deficits are most readily explained by protracted magma degassing. Using published numerical models, the data suggest that degassing occurred continuously for periods up to several decades just prior to eruption but no link with eruption periodicity was found. Longer periods are required if degassing is discontinuous, less than 100% efficient or if magma is recharged or stored after degassing. The long durations suggest much of this degassing occurs at depth with implications for the formation of hydrothermal and copper-porphyry systems. A suite of lavas erupted in 1985-1986 from Sangeang Api volcano in the Sunda arc are characterised by deficits of Pb-210 relative to Ra-226 from which 6-8 years of continuous Rn-222 degassing would be inferred from recent numerical models. These data also form a linear (Pb-210)/Pb-(Ra-226)/Pb array which might be interpreted as a 71-year isochron. However, the array passes through the origin suggesting displacement downwards from the equiline in response to degassing and so the slope of the array is inferred not to have any age significance. Simple modelling shows that the range of (Ra-226)/Pb ratios requires thousands of years to develop consistent with differentiation occurring in response to cooling at the base of the crust. Thus, degassing post-dated, and was not responsible for magma differentiation. The formation, migration and extraction of gas bubbles must be extremely efficient in mafic magma whereas the higher viscosity of more siliceous magmas retards the process and can lead to Pb-210 excesses. A possible negative correlation between (Pb-210/Ra-226)(o) and SO2 emission rate requires further testing but may have implications for future eruptions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Metal contaminants in garden and allotment soils could possibly affect human health through a variety of pathways. This study focused on the potential pathway of consumption of vegetables grown on contaminated soil. Five cultivars each of six common vegetables were grown in a control and in a soil spiked with Cd, Cu, Pb and Zn. Highly significant differences in metal content were evident between cultivars of a number of vegetables for several of the contaminants. Carrot and pea cultivars exhibited significant differences in accumulated concentrations of Cd and Cu with carrot cultivars also exhibiting significant differences in Zn. Distinctive differences were also identified when comparing one vegetable to another, legumes (Leguminosae) tending to be low accumulators, root vegetables (Umbelliferae and Liliaceae) tending to be moderate accumulators and leafy vegetables (Compositae and Chenopodiaceae) being high accumulators. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Disequilibria between Pb-210 and Ra-226 can be used to trace magma degassing, because the intermediate nuclides, particularly Rn-222, are volatile. Products of the 1980-1986 eruptions of Mount St. Helens have been analysed for (Pb-210/Ra-226). Both excesses and deficits of Pb-210 are encountered suggesting rapid gas transfer. The time scale of diffuse, non-eruptive gas escape prior to 1980 as documented by Pb-210 deficits is on the order of a decade using the model developed by Gauthier and Condomines (Earth Planet. Sci. Lett. 172 (1999) 111-126) for a non-renewed magma chamber and efficient Rn removal. The time required to build-up Pb-210 excess is much shorter (months) as can be observed from steady increases of (Pb-210/Ra-226) with time during 1980-1982. The formation of Pb-210 excess requires both rapid gas transport through the magma and periodic blocking of gas escape routes. Superposed on this time trend is the natural variability of (Pb-210/Ra-226) in a single eruption caused by tapping magma from various depths. The two time scales of gas transport, to create both Pb-210 deficits and Pb-210 excesses, cannot be reconciled in a single event. Rather Pb-210 deficits are associated with pre-eruptive diffuse degassing, while Pb-210 excesses document the more vigorous degassing associated with eruption and recharge of the system. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Soil and Vitis vinifera L (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Mature (clitellate) Eisenia andrei Bouche (ultra epigeic), Lumbricus rubellus Hoffmeister (epigeic), and Aporrectodea caliginosa (Savigny) (endogeic) earthworms were placed in soils treated with Pb(NO3)(2) to have concentrations in the range 1000 to 10 000 mg Pb kg(-1). After 28 days LC50(-95%confidence limit) (+95%confidence limit) values were E. andrei 5824(-361)(+898) mg Pb kg(-1), L. rubellus 2867(-193)(+145) mg Pb kg(-1) and A. caliginosa 2747(-304)(+239) mg Pb kg(-1) and EC50s for weight change were E. andrei 2841(-68)(+150) Pb kg(-1), L. rubellus 1303(-201)(+204) mg Pb kg(-1) and A. caliginosa 1208(-206)(+212) Mg Pb kg(-1). At any given soil Pb concentration, Pb tissue concentrations after 28 days were the same for all three earthworm species. In a soil avoidance test there was no difference between the behaviour of the different species. The lower sensitivity to Pb exhibited by E. andrei is most likely due to physiological adaptations associated with the modes of life of the earthworms, and could have serious implications for the use of this earthworm as the species of choice in standard toxicological testing. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Sediments play a fundamental role in the behaviour of contaminants in aquatic systems. Various processes in sediments, eg adsorption-desorption, oxidation-reduction, ion exchange or biological activities, can cause accumulation or release of metals and anions from the bottom of reservoirs, and have been recently studied in Polish waters [1-3]. Sediment samples from layer A: (1 divided by 6 cm depth in direct contact with bottom water); layer B: (7 divided by 12 cm depth moderate contact); and layer C: (12+ cm depth, in theory an inactive layer) were collected in September 2007 from six sites representing different types of hydrological conditions along the Dobczyce Reservoir (Fig. l). Water depths at the sampling points varied from 3.5 to 21 m. We have focused on studying the distribution and accumulation of several heavy metals (Cr, Pb, Cd, Cu and Zn) in the sediments. The surface, bottom and pore water (extracted from sediments by centrifugation) samples were also collected. Possible relationships between the heavy-metal distribution in sediments and the sediment characteristics (mineralogy, organic matter) as well as the Fe, Mn and Ca content of sediments, have been studied. The 02 concentrations in water samples were also measured. The heavy metals in sediments ranged from 19.0 to 226.3 mg/kg of dry mass (ppm). The results show considerable variations in heavy-metal concentrations between the 6 stations, but not in the individual layers (A, B, C). These variations are related to the mineralogy and chemical composition of the sediments and their pore waters.
Resumo:
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soilamendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1, 1, 10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05,0.25,0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (similar to soluble fraction), extraction with 1 M NH4OAc at pH 7 (similar to exchangeable fraction), and extraction with 0.5 M NH4OAc + 0.5 M HOAc + 0.02 M EDTA atpH 4.65 (similar to potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annutis will be presented.
Resumo:
In January 1992, there was a major pollutant event for the River Canon and downstream with its confluence to the River Fal and the Fal estuary in the west Cornwall. This incident was associated with the discharge of several million gallons of highly polluted water from the abandoned Wheal Jane tin mine that also extracted Ag, Cu and Zn ore. Later that year, the Centre for Ecology and Hydrology (CBH; then Institute of Hydrology) Wallingford undertook daily monitoring of the River Canon for a range of major, minor and trace elements to assess the nature and the dynamics of the pollutant discharges. These data cover an 18-month period when there remained major water-quality problems after the initial phase of surface water contamination. Here, a summary is provided of the water quality found, as a backdrop to set against subsequent remediation. Two types of water-quality determinant grouping were observed. The first type comprises the determinants B, Cs, Ca, Li, K, Na, SO4, Rb and Sr, and their concentrations are positively correlated with each other but inversely correlated with flow. This type of water-quality determinant shows variations in concentration that broadly link to the normal hydrogeochemical processes within the catchment, with limited confounding issues associated with mine drainage. The second type of water-quality determinant comprises Al, Be, Cd, Ce, Co, Cu, Fe, La, Pb, Pr, Nd, Ni, Si, Sb, U, Y and Zn, and concentrations for all this group are positively correlated. The determinants in this second group all have concentrations that are negatively correlated with pH. This group links primarily to pollutant mine discharge. The water-quality variations in the River Camon are described in relation to these two distinct hydrogeochemical groupings. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Earthworms are an essential part of the soil fauna in many global soils, represent a significant proportion of the soil biomass and are regarded as a useful indicator of soil health and quality (Edwards, 2004). They are also often the subject of inoculation programmes during the restoration of degraded lands (Butt, 1999) and the inoculation of earthworms to metal-contaminated soils has been suggested (Dickinson, 2000) largely due to the role earthworms are known to play in soil formation at such sites (Frouz et al., 2007).
Resumo:
The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
New data show that island arc rocks have (Pb-210/Ra-226)(o) ratios which range from as low as 0.24 up to 2.88. In contrast, (Ra-22S/Th-232) appears always within error of I suggesting that the large Ra-226-excesses observed in arc rocks were generated more than 30 years ago. This places a maximum estimate on melt ascent velocities of around 4000 m/year and provides further confidence that the Ra-226 excesses reflect deep (source) processes rather than shallow level alteration or seawater contamination. Conversely, partial melting must have occurred more than 30 years prior to eruption. The Pb-210 deficits are most readily explained by protracted magma degassing. Using published numerical models, the data suggest that degassing occurred continuously for periods up to several decades just prior to eruption but no link with eruption periodicity was found. Longer periods are required if degassing is discontinuous, less than 100% efficient or if magma is recharged or stored after degassing. The long durations suggest much of this degassing occurs at depth with implications for the formation of hydrothermal and copper-porphyry systems. A suite of lavas erupted in 1985-1986 from Sangeang Api volcano in the Sunda arc are characterised by deficits of Pb-210 relative to Ra-226 from which 6-8 years of continuous Rn-222 degassing would be inferred from recent numerical models. These data also form a linear (Pb-210)/Pb-(Ra-226)/Pb array which might be interpreted as a 71-year isochron. However, the array passes through the origin suggesting displacement downwards from the equiline in response to degassing and so the slope of the array is inferred not to have any age significance. Simple modelling shows that the range of (Ra-226)/Pb ratios requires thousands of years to develop consistent with differentiation occurring in response to cooling at the base of the crust. Thus, degassing post-dated, and was not responsible for magma differentiation. The formation, migration and extraction of gas bubbles must be extremely efficient in mafic magma whereas the higher viscosity of more siliceous magmas retards the process and can lead to Pb-210 excesses. A possible negative correlation between (Pb-210/Ra-226)(o) and SO2 emission rate requires further testing but may have implications for future eruptions. (C) 2004 Elsevier B.V. All rights reserved.