14 resultados para Infrastructure Design

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyses the trends of the changing environmental effects within growing megacities as their diameters exceed 50–100 km and their populations rise beyond 30 million people. The authors consider how these effects are influenced by climate change, to which urban areas themselves contribute, caused by their increasing greenhouse gas emissions associated with rapidly expanding energy use. Other environmental and social factors are assessed, quantitatively and qualitatively, using detailed modelling of urban mesoscale meteorology, which shows how these factors can lead to large conurbations becoming more vulnerable to climatic and environmental hazards. The paper discusses the likely changes in meteorological and hydrological hazards in urban areas, both as the climate changes and the sizes of urban areas grow. Examples are given of how these risks are being reduced through innovations in warning and response systems, planning and infrastructure design, which should include refuges against extreme natural disasters. Policies are shown to be more effective when they are integrated and based on substantial community involvement. Some conclusions are drawn regarding how policies for the natural and artificial environment and for reducing many kinds of climate and hazard risk are related to future designs and planning of infrastructure and open spaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Procurement is one of major business operations in public service sector. The advance of information and communication technology (ICT) pushes this business operation to increase its efficiency and foster collaborations between the organization and its suppliers. This leads to a shift from the traditional procurement transactions to an e-procurement paradigm. Such change impacts on business process, information management and decision making. E-procurement involves various stakeholders who engage in activities based on different social and cultural practices. Therefore, a design of e-procurement system may involve complex situations analysis. This paper describes an approach of using the problem articulation method to support such analysis. This approach is applied to a case study from UAE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New skills are needed to compete, as integrated software solutions provide a digital infrastructure for projects. This changes the practice of information management and engineering design on next generation projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the UK, public expenditure on transport infrastructure is nearly £6 billion for the past few years. Over £500 million per year were spent on bridge assessment and strengthening and reducing the backlog of road requiring maintenance. A further £200 million a year will be spent on keeping the safe operation of the network and efficiently through day to day maintenance, lighting and signing . The Department of Transport is planning to extend private sector experience in road management and operation by introducing Design, Build, Finance and Operate (DBFO) This paper investigates the different ways of financing road transport infrastructure including road pricing, private finance in transport infrastructure, the role of the private sector, Design, Build, Finance and Operate (DBFO) schemes, the benefits and problems of such schemes. The paper considers planning gain as a means of financing transport infrastructure with examples of developers to fund link road building and improvements to the local planning system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What happens when digital coordination practices are introduced into the institutionalized setting of an engineering project? This question is addressed through an interpretive study that examines how a shared digital model becomes used in the late design stages of a major station refurbishment project. The paper contributes by mobilizing the idea of ‘hybrid practices’ to understand the diverse patterns of activity that emerge to manage digital coordination of design. It articulates how engineering and architecture professions develop different relationships with the shared model; the design team negotiates paper-based practices across organizational boundaries; and diverse practitioners probe the potential and limitations of the digital infrastructure. While different software packages and tools have become linked together into an integrated digital infrastructure, these emerging hybrid practices contrast with the interactions anticipated in practice and policy guidance and presenting new opportunities and challenges for managing project delivery. The study has implications for researchers working in the growing field of empirical work on engineering project organizations as it shows the importance of considering, and suggests new ways to theorise, the introduction of digital coordination practices into these institutionalized settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safety

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The built environment in China is required to achieve a 50% reduction in carbon emissions by 2020 against the 1980 design standard. A particular challenge is how to maintain acceptable comfort conditions through the hot humid summers and cold desiccating winters of its continental climate regions. Fully air-conditioned sealed envelopes, often fully glazed, are becoming increasingly common in these regions. Remedial strategies involve technical refinements to the air-handling equipment and a contribution from renewable energy sources in an attempt to achieve the prescribed net reduction in energy use. However an alternative hybrid environmental design strategy is developed in this research project. It exploits observed temperate periods of weeks, days, even hours in duration to free-run an office and exhibition building configured to promote natural stack ventilation when ambient conditions permit and mechanical ventilation when conditions require it, the two modes delivered through the same physical infrastructure. The proposal is modelled in proprietary software and the methodology adopted is described. The challenge is compounded by its first practical application to an existing reinforced concrete frame originally designed to receive a highly glazed envelope. This original scheme is reviewed in comparison. Furthermore the practical delivery of the proposal value engineered out a proportion of the ventilation stacks. The likely consequence of this for the environmental performance of the building is investigated through a sensitivity study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordination of work and expertise in construction projects is often treated in terms of models or formal rules. However, much is to be gained, if we are to understand it, by examining actual coordination practices. The objective in this article is to address practices of coordination of expertise in the context of design team meetings. The focus is specifically on conversational practices between the structural engineer and the landscape architect part of the design team in a healthcare infrastructure project. The central argument is that the coordination of expertise relied on and was organised by mundane and everyday methods, and not by formal and abstract ones. This argument is drawn from ethnomethodology, a form of sociological analysis that focuses on the situated methods by which activities are produced, but shares concerns found in the literature on actual project management practices. The ethnomethodological stance, however, offers a different perspective on the significance of the empirical reality of projects and a possibility to incorporate within this literature a concern with the ordinary methodical organisation of project activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Good urban design has the power to aid in the provision of inclusive journey environments, yet traditionally neglects the perspective of the cyclist. This paper starts from the premise that more can be done to understand and articulate cyclists’ experiences and perceptions of the urban environment in which they cycle, as part of a closer linking of urban design qualities with transport planning and infrastructure interventions. This approach is particularly applicable in relation to older cyclists, a group whose needs are often poorly understood and for whom perceptions can significantly influence mobile behaviours. Currently, knowledge regarding the relationship between the built environment and physical activity, including cycling, in older adults is limited. As European countries face up to the challenges associated with ageing populations, some metropolitan regions, such as Munich, Germany, are making inroads into widening cycling’s appeal across generations through a combination of urban design, policy and infrastructure initiatives. The paper provides a systematic understanding of the urban design qualities and built environment features that affect cycling participation and have the potential to contribute towards healthy ageing. Urban design features such as legibility, aesthetics, scale and open space have been shown to influence and affect other mobile behaviours (e.g. walking), but their role as a mediator in cycle behaviour remains under-explored. Many of these design ‘qualities’ are related to individual perceptions; capturing these can help build a picture of quality in the built environment that includes an individual’s relationship with their local neighbourhood and its influences on their mobility choices. Issues of accessibility, facilities, and safety in cycling remain crucial, and, when allied to these design ‘qualities‘, provides a more rounded reflection of everyday journeys and trips taken or desired. The paper sets out the role that urban design might play in mediating these critical mobility issues, and in particular, in better understanding the ‘quality of the journey’. It concludes by highlighting the need for designers, policy makers, planners and academics to consider the role that design can play in encouraging cycle participation, especially as part of a healthy ageing agenda.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too-generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level– little consideration is given to the composition of the plant-communities, yet this is what ultimately defines extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more-fully in identifying those plants that promote various services. Scope - Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Conclusions – Although research is in its infancy, data is being generated that relates plant traits to specific services; thereby helping identify genotypes that optimise service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few ‘functional’ genotypes. Therefore, further information is required on how to design plant communities where the plants identified:- a/ provide more than a single benefit (multi-functionality) b/ complement each other in maximising the range of benefits that can be delivered in one location and c/ continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high impact arena for plant science.