10 resultados para Information search – models
em CentAUR: Central Archive University of Reading - UK
Resumo:
Information services play a crucial role in grid environments in that the state information can be used to facilitate the discovery of resources and the services available to meet user requirements, and also to help tune the performance of a grid system. However, the large size and dynamic nature of the grid brings forth a number of challenges for information services. This paper presents PIndex, a grouped peer-to-peer network that can be used for scalable grid information services. PIndex builds on Globus MDS4, but introduces peer groups to dynamically split the large grid information search space into many small sections to enhance its scalability and resilience. PIndex is subsequently modeled with Colored Petri Nets for performance evaluation. The simulation results show that PIndex is scalable and resilient in dealing with a large number of peer nodes.
Resumo:
Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
For those few readers who do not know, CAFS is a system developed by ICL to search through data at speeds of several million characters per second. Its full name is Content Addressable File Store Information Search Processor, CAFS-ISP or CAFS for short. It is an intelligent hardware-based searching engine, currently available with both ICL's 2966 family of computers and the recently announced Series 39, operating within the VME environment. It uses content addressing techniques to perform fast searches of data or text stored on discs: almost all fields are equally accessible as search keys. Software in the mainframe generates a search task; the CAFS hardware performs the search, and returns the hit records to the mainframe. Because special hardware is used, the searching process is very much more efficient than searching performed by any software method. Various software interfaces are available which allow CAFS to be used in many different situations. CAFS can be used with existing systems without significant change. It can be used to make online enquiries of mainframe files or databases or directly from user written high level language programs. These interfaces are outlined in the body of the report.
Resumo:
While search is normally modelled by economists purely in terms of decisions over making observations, this paper models it as a process in which information is gained through feedback from innovatory product launches. The information gained can then be used to decide whether to exercise real options. In the model the initial decisions involve a product design and the scale of production capacity. There are then real options to change these factors based on what is learned. The case of launching product variants in parallel is also considered. Under ‘true’ uncertainty, the model can be seen in terms of heuristic decision-making based on subjective beliefs with limited foresight. Search costs, the values of the real options, beliefs, and the cost of capital are all shown to be significant in determining the search path.
Resumo:
We consider the finite sample properties of model selection by information criteria in conditionally heteroscedastic models. Recent theoretical results show that certain popular criteria are consistent in that they will select the true model asymptotically with probability 1. To examine the empirical relevance of this property, Monte Carlo simulations are conducted for a set of non–nested data generating processes (DGPs) with the set of candidate models consisting of all types of model used as DGPs. In addition, not only is the best model considered but also those with similar values of the information criterion, called close competitors, thus forming a portfolio of eligible models. To supplement the simulations, the criteria are applied to a set of economic and financial series. In the simulations, the criteria are largely ineffective at identifying the correct model, either as best or a close competitor, the parsimonious GARCH(1, 1) model being preferred for most DGPs. In contrast, asymmetric models are generally selected to represent actual data. This leads to the conjecture that the properties of parameterizations of processes commonly used to model heteroscedastic data are more similar than may be imagined and that more attention needs to be paid to the behaviour of the standardized disturbances of such models, both in simulation exercises and in empirical modelling.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
Task relevance affects emotional attention in healthy individuals. Here, we investigate whether the association between anxiety and attention bias is affected by the task relevance of emotion during an attention task. Participants completed two visual search tasks. In the emotion-irrelevant task, participants were asked to indicate whether a discrepant face in a crowd of neutral, middle-aged faces was old or young. Irrelevant to the task, target faces displayed angry, happy, or neutral expressions. In the emotion-relevant task, participants were asked to indicate whether a discrepant face in a crowd of middle-aged neutral faces was happy or angry (target faces also varied in age). Trait anxiety was not associated with attention in the emotion-relevant task. However, in the emotion-irrelevant task, trait anxiety was associated with a bias for angry over happy faces. These findings demonstrate that the task relevance of emotional information affects conclusions about the presence of an anxiety-linked attention bias.