13 resultados para Information Requirements: Data Availability

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of information requirements for e-business systems reveals that the level of detail, granularity, format of presentation, and a broad range of information types are required for the applications. The provision of relevant information affects how e-business systems can efficiently support the business goals and processes. This paper presents an approach for determining information requirements for e-business systems (DIRES) which will allow the user to describe the core business processes, whose specification maps onto a business activity space. It further aids a configuration of information requirements into an information space. A case study of a logistics company in China demonstrates the use of DIRES techniques and assesses the validity of the research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of information provision influences considerably knowledge construction driven by individual users’ needs. In the design of information systems for e-learning, personal information requirements should be incorporated to determine a selection of suitable learning content, instructive sequencing for learning content, and effective presentation of learning content. This is considered as an important part of instructional design for a personalised information package. The current research reveals that there is a lack of means by which individual users’ information requirements can be effectively incorporated to support personal knowledge construction. This paper presents a method which enables an articulation of users’ requirements based on the rooted learning theories and requirements engineering paradigms. The user’s information requirements can be systematically encapsulated in a user profile (i.e. user requirements space), and further transformed onto instructional design specifications (i.e. information space). These two spaces allow the discovering of information requirements patterns for self-maintaining and self-adapting personalisation that enhance experience in the knowledge construction process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensemble-based data assimilation is rapidly proving itself as a computationally-efficient and skilful assimilation method for numerical weather prediction, which can provide a viable alternative to more established variational assimilation techniques. However, a fundamental shortcoming of ensemble techniques is that the resulting analysis increments can only span a limited subspace of the state space, whose dimension is less than the ensemble size. This limits the amount of observational information that can effectively constrain the analysis. In this paper, a data selection strategy that aims to assimilate only the observational components that matter most and that can be used with both stochastic and deterministic ensemble filters is presented. This avoids unnecessary computations, reduces round-off errors and minimizes the risk of importing observation bias in the analysis. When an ensemble-based assimilation technique is used to assimilate high-density observations, the data-selection procedure allows the use of larger localization domains that may lead to a more balanced analysis. Results from the use of this data selection technique with a two-dimensional linear and a nonlinear advection model using both in situ and remote sounding observations are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information architecture (IA) is defined as high level information requirements of an organisation. It is applied in areas such as information systems development, enterprise architecture, business processes management and organisational change management. Still, the lack of methods and theories prevents information architecture becoming a distinct discipline. Healthcare organisation is always seen as information intensive organisation, moreover in a pervasive healthcare environment. Pervasive healthcare aims to provide healthcare services to anyone, anywhere and anytime by incorporating mobile devices and wireless network. Information architecture hence plays an important role in information provisioning within the context of pervasive healthcare in order to support decision making and communication between clinician and patients. Organisational semiotics is one of the social technical approaches that contemplate information through the norms or activities performed within an organisation prior to pervasive healthcare implementation. This paper proposes a conceptual design of information architecture for pervasive healthcare. It is illustrated with a scenario of mental health patient monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pasture-based ruminant production systems are common in certain areas of the world, but energy evaluation in grazing cattle is performed with equations developed, in their majority, with sheep or cattle fed total mixed rations. The aim of the current study was to develop predictions of metabolisable energy (ME) concentrations in fresh-cut grass offered to non-pregnant non-lactating cows at maintenance energy level, which may be more suitable for grazing cattle. Data were collected from three digestibility trials performed over consecutive grazing seasons. In order to cover a range of commercial conditions and data availability in pasture-based systems, thirty-eight equations for the prediction of energy concentrations and ratios were developed. An internal validation was performed for all equations and also for existing predictions of grass ME. Prediction error for ME using nutrient digestibility was lowest when gross energy (GE) or organic matter digestibilities were used as sole predictors, while the addition of grass nutrient contents reduced the difference between predicted and actual values, and explained more variation. Addition of N, GE and diethyl ether extract (EE) contents improved accuracy when digestible organic matter in DM was the primary predictor. When digestible energy was the primary explanatory variable, prediction error was relatively low, but addition of water-soluble carbohydrates, EE and acid-detergent fibre contents of grass decreased prediction error. Equations developed in the current study showed lower prediction errors when compared with those of existing equations, and may thus allow for an improved prediction of ME in practice, which is critical for the sustainability of pasture-based systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geospatial information of many kinds, from topographic maps to scientific data, is increasingly being made available through web mapping services. These allow georeferenced map images to be served from data stores and displayed in websites and geographic information systems, where they can be integrated with other geographic information. The Open Geospatial Consortium’s Web Map Service (WMS) standard has been widely adopted in diverse communities for sharing data in this way. However, current services typically provide little or no information about the quality or accuracy of the data they serve. In this paper we will describe the design and implementation of a new “quality-enabled” profile of WMS, which we call “WMS-Q”. This describes how information about data quality can be transmitted to the user through WMS. Such information can exist at many levels, from entire datasets to individual measurements, and includes the many different ways in which data uncertainty can be expressed. We also describe proposed extensions to the Symbology Encoding specification, which include provision for visualizing uncertainty in raster data in a number of different ways, including contours, shading and bivariate colour maps. We shall also describe new open-source implementations of the new specifications, which include both clients and servers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increase in e-commerce and the digitisation of design data and information,the construction sector has become reliant upon IT infrastructure and systems. The design and production process is more complex, more interconnected, and reliant upon greater information mobility, with seamless exchange of data and information in real time. Construction small and medium-sized enterprises (CSMEs), in particular,the speciality contractors, can effectively utilise cost-effective collaboration-enabling technologies, such as cloud computing, to help in the effective transfer of information and data to improve productivity. The system dynamics (SD) approach offers a perspective and tools to enable a better understanding of the dynamics of complex systems. This research focuses upon system dynamics methodology as a modelling and analysis tool in order to understand and identify the key drivers in the absorption of cloud computing for CSMEs. The aim of this paper is to determine how the use of system dynamics (SD) can improve the management of information flow through collaborative technologies leading to improved productivity. The data supporting the use of system dynamics was obtained through a pilot study consisting of questionnaires and interviews from five CSMEs in the UK house-building sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Comparative analyses are used to address the key question of what makes a species more prone to extinction by exploring the links between vulnerability and intrinsic species’ traits and/or extrinsic factors. This approach requires comprehensive species data but information is rarely available for all species of interest. As a result comparative analyses often rely on subsets of relatively few species that are assumed to be representative samples of the overall studied group. 2. Our study challenges this assumption and quantifies the taxonomic, spatial, and data type biases associated with the quantity of data available for 5415 mammalian species using the freely available life-history database PanTHERIA. 3. Moreover, we explore how existing biases influence results of comparative analyses of extinction risk by using subsets of data that attempt to correct for detected biases. In particular, we focus on links between four species’ traits commonly linked to vulnerability (distribution range area, adult body mass, population density and gestation length) and conduct univariate and multivariate analyses to understand how biases affect model predictions. 4. Our results show important biases in data availability with c.22% of mammals completely lacking data. Missing data, which appear to be not missing at random, occur frequently in all traits (14–99% of cases missing). Data availability is explained by intrinsic traits, with larger mammals occupying bigger range areas being the best studied. Importantly, we find that existing biases affect the results of comparative analyses by overestimating the risk of extinction and changing which traits are identified as important predictors. 5. Our results raise concerns over our ability to draw general conclusions regarding what makes a species more prone to extinction. Missing data represent a prevalent problem in comparative analyses, and unfortunately, because data are not missing at random, conventional approaches to fill data gaps, are not valid or present important challenges. These results show the importance of making appropriate inferences from comparative analyses by focusing on the subset of species for which data are available. Ultimately, addressing the data bias problem requires greater investment in data collection and dissemination, as well as the development of methodological approaches to effectively correct existing biases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ISO19156 Observations and Measurements (O&M) provides a standardised framework for organising information about the collection of information about the environment. Here we describe the implementation of a specialisation of O&M for environmental data, the Metadata Objects for Linking Environmental Sciences (MOLES3). MOLES3 provides support for organising information about data, and for user navigation around data holdings. The implementation described here, “CEDA-MOLES”, also supports data management functions for the Centre for Environmental Data Archival, CEDA. The previous iteration of MOLES (MOLES2) saw active use over five years, being replaced by CEDA-MOLES in late 2014. During that period important lessons were learnt both about the information needed, as well as how to design and maintain the necessary information systems. In this paper we review the problems encountered in MOLES2; how and why CEDA-MOLES was developed and engineered; the migration of information holdings from MOLES2 to CEDA-MOLES; and, finally, provide an early assessment of MOLES3 (as implemented in CEDA-MOLES) and its limitations. Key drivers for the MOLES3 development included the necessity for improved data provenance, for further structured information to support ISO19115 discovery metadata export (for EU INSPIRE compliance), and to provide appropriate fixed landing pages for Digital Object Identifiers (DOIs) in the presence of evolving datasets. Key lessons learned included the importance of minimising information structure in free text fields, and the necessity to support as much agility in the information infrastructure as possible without compromising on maintainability both by those using the systems internally and externally (e.g. citing in to the information infrastructure), and those responsible for the systems themselves. The migration itself needed to ensure continuity of service and traceability of archived assets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.