99 resultados para Indoor Air quality

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The internal partitioning, which is frequently introduced in open-space planning due to its flexibility, was tested to study its effects on the room air quality as well as ventilation performance. For the study, physical tests using a small model room and numerical modeling using CFD computation were utilized to evaluate different test conditions employing mixing ventilation from the ceiling. The partition parameters, such as its location, height, and the gap underneath, as well as contaminant source location were tested under isothermal conditions. This paper summarizes the results from the study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature, relative humidity, and air quality all affect the sensory system via thermo receptors in the skin and the olfactory system. Air quality is mainly defined by the contaminants in the air. However, the most persistent memory of any space is often its odor. Strong, emotional, and past experiences are awakened by the olfactory sense. Odors can also influence cognitive processes that affect creative task performance, as well as personal memories and moods. Besides nitrogen and oxygen, the air contains particles and many chemicals that affect the efficiency of the oxygenation process in the blood, and ultimately the air breathed affects thinking and concentration. It is important to show clients the value of spending more capital on high-quality buildings that promote good ventilation. The process of achieving indoor-air quality is a continual one throughout the design, construction, commissioning, and facilities management processes. This paper reviews the evidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of distributing the outdoor air in classrooms has a major impact on indoor air quality and thermal comfort of pupils. In a previous study, ([11] Karimipanah T, Sandberg M, Awbi HB. A comparative study of different air distribution systems in a classroom. In: Proceedings of Roomvent 2000, vol. II, Reading, UK, 2000. p. 1013-18; [13] Karimipanah T, Sandberg M, Awbi HB, Blomqvist C. Effectiveness of confluent jets ventilation system for classrooms. In: Idoor Air 2005, Beijing, China, 2005 (to be presented).) presented results for four and two types of air distribution systems tested in a purpose built classroom with simulated occupancy as well as computational fluid dynamics (CFD) modelling. In this paper, the same experimental setup has been used to investigate the indoor environment in the classroom using confluent jet ventilation, see also ([12]Cho YJ, Awbi HB, Karimipanah T. The characteristics of wall confluent jets for ventilated enclosures. In: Proceedings of Roomvent 2004, Coimbra, Portugal, 2004.) Measurements of air speed, air temperature and tracer gas concentrations have been carried out for different thermal conditions. In addition, 56 cases of CFD simulations have been carried to provide additional information on the indoor air quality and comfort conditions throughout the classroom, such as ventilation effectiveness, air exchange effectiveness, effect of flow rate, effect of radiation, effect of supply temperature, etc., and these are compared with measured data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article addresses the need for providing good standards of indoor air quality (IAQ) in buildings from the view point of health, well-being and productivity of building occupants. It briefly outlines the role of ventilation in achieving the required IAQ targets and discusses the performance of different types of ventilation systems in use. As a result of new energy efficiency directives and legislations in Europe and elsewhere, the ventilation energy component of HVAC systems has increased in relative terms and this article introduces a method for evaluating the performance air distribution systems that is based on ventilation and energy effectiveness. A range of ventilation systems are discussed, including mechanical and natural ventilation, and results for more recently developed mechanical air distribution systems are compared with conventional systems. The article provides an assessment and comparison of some of these systems with reference to ventilation performance and energy efficiency

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional computational simulations are performed to examine indoor environment and micro-environment around human bodies in an office in terms of thermal environment and air quality. In this study, personal displacement ventilation (PDV), including two cases with all seats taken and two middle seats taken, is compared with overall displacement ventilation (ODV) of all seats taken under the condition that supply temperature is 24℃ and air change rate is 60 l/s per workstation. When using PDV, temperature stratification, the characteristic of displacement ventilation, is obviously observed at the position of occupant’s head and clearer in the case with all seats taken. Verticalertical ertical temperature temperature temperature temperature temperature differences below height of the head areare under under under 2℃ in two cases in two cases in two cases in two cases in two cases in two cases in two cases in two cases with all seats taken,and the temperature with PDV is higher than that with ODV. Verticalertical ertical temperature temperature temperature temperature temperature temperature difference is under 3 under 3under 3 under 3℃ in the case in the case in the case in the case in the case in the case in the case with two middle seats taken. CO2 concentration is lower th is lower th is lower this lower this lower than 2 g/man 2 g/m an 2 g/man 2 g/man 2 g/man 2 g/m 3 in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. The results indicate that PDV can be used in the room with big change of occupants’ number to satisfy the need of thermal comfort and air quality. When not all seats are taken, designers should increase supply air requirement or reduce its temperature for thermal comfort. INDEX TERMS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – To evaluate the control strategy for a hybrid natural ventilation wind catchers and air-conditioning system and to assess the contribution of wind catchers to indoor air environments and energy savings if any. Design/methodology/approach – Most of the modeling techniques for assessing wind catchers performance are theoretical. Post-occupancy evaluation studies of buildings will provide an insight into the operation of these building components and help to inform facilities managers. A case study for POE was presented in this paper. Findings – The monitoring of the summer and winter month operations showed that the indoor air quality parameters were kept within the design target range. The design control strategy failed to record data regarding the operation, opening time and position of wind catchers system. Though the implemented control strategy was working effectively in monitoring the operation of mechanical ventilation systems, i.e. AHU, did not integrate the wind catchers with the mechanical ventilation system. Research limitations/implications – Owing to short-falls in the control strategy implemented in this project, it was found difficult to quantify and verify the contribution of the wind catchers to the internal conditions and, hence, energy savings. Practical implications – Controlling the operation of the wind catchers via the AHU will lead to isolation of the wind catchers in the event of malfunctioning of the AHU. Wind catchers will contribute to the ventilation of space, particularly in the summer months. Originality/value – This paper demonstrates the value of POE as indispensable tool for FM professionals. It further provides insight into the application of natural ventilation systems in building for healthier indoor environments at lower energy cost. The design of the control strategy for natural ventilation and air-conditioning should be considered at the design stage involving the FM personnel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In designing modern office buildings, building spaces are frequently zoned by introducing internal partitioning, which may have a significant influence on the room air environment. This internal partitioning was studied by means of model test, numerical simulation, and statistical analysis as the final stage. In this paper, the results produced from the statistical analysis are summarized and presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until recently, there has been little investigation concerning the poor indoor air quality (IAQ) in classrooms. Despite the evidence that the educational building systems in many of the UK institutions have significant defects that may degrade IAQ, systematic assessments of IAQ measurements has been rarely undertaken. When undertaking IAQ measurement, there is a difficult task of representing and characterizing the environment parameters. Although technologies exist to measure these parameters, direct measurements especially in a naturally ventilated spaces are often difficult. This paper presents a methodology for developing a method to characterize indoor environment flow parameters as well as the Carbon Dioxide (CO2) concentrations. Thus, CO2 concentration level can be influenced by the differences in the selection of sampling points and heights. However, because this research focuses on natural ventilation in classrooms, air exchange is provided mainly by air infiltration. It is hoped that the methodology developed and evaluated in this research can effectively simplify the process of estimating the parameters for a systematic assessment of IAQ measurements in a naturally ventilated classrooms.