67 resultados para Incremental Clustering
em CentAUR: Central Archive University of Reading - UK
Resumo:
The present work presents a new method for activity extraction and reporting from video based on the aggregation of fuzzy relations. Trajectory clustering is first employed mainly to discover the points of entry and exit of mobiles appearing in the scene. In a second step, proximity relations between resulting clusters of detected mobiles and contextual elements from the scene are modeled employing fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows building the structure of the scene and characterises the ongoing different activities of the scene. Discovered activity zones can be reported as activity maps with different granularities thanks to the analysis of the transitive closure matrix. Taking advantage of the soft relation properties, activity zones and related activities can be labeled in a more human-like language. We present results obtained on real videos corresponding to apron monitoring in the Toulouse airport in France.
Resumo:
The clustering in time (seriality) of extratropical cyclones is responsible for large cumulative insured losses in western Europe, though surprisingly little scientific attention has been given to this important property. This study investigates and quantifies the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach. A possible mechanism for serial clustering is the time-varying effect of the large-scale flow on individual cyclone tracks. Another mechanism is the generation by one parent cyclone of one or more offspring through secondary cyclogenesis. A long cyclone-track database was constructed for extended October March winters from 1950 to 2003 using 6-h analyses of 850-mb relative vorticity derived from the NCEP NCAR reanalysis. A dispersion statistic based on the varianceto- mean ratio of monthly cyclone counts was used as a measure of clustering. It reveals extensive regions of statistically significant clustering in the European exit region of the North Atlantic storm track and over the central North Pacific. Monthly cyclone counts were regressed on time-varying teleconnection indices with a log-linear Poisson model. Five independent teleconnection patterns were found to be significant factors over Europe: the North Atlantic Oscillation (NAO), the east Atlantic pattern, the Scandinavian pattern, the east Atlantic western Russian pattern, and the polar Eurasian pattern. The NAO alone is not sufficient for explaining the variability of cyclone counts in the North Atlantic region and western Europe. Rate dependence on time-varying teleconnection indices accounts for the variability in monthly cyclone counts, and a cluster process did not need to be invoked.
Resumo:
A methodology for discovering the mechanisms and dynamics of protein clustering on solid surfaces is presented. In situ atomic force microscopy images are quantitatively compared to Monte Carlo simulations using cluster statistics to differentiate various models. We study lysozyme adsorption on mica as a model system and find that all surface-supported clusters are mobile, not just the monomers, with diffusion constant inversely related to cluster size. The surface monomer diffusion constant is measured to be D1∼9×10-16 cm2 s-1, such a low value being difficult to measure using other techniques.
Resumo:
In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database.
Resumo:
Eight Jersey cows were used in two balanced 4 x 4 Latin Squares to investigate the effects of replacement of dietary starch with non-forage fibre on productivity, diet digestibility and feeding behaviour. Total-mixed rations consisted of maize silage, grass silage and a soyabean meal-based concentrate mixture, each at 250g/kg DM, with the remaining 250g consisting of cracked wheat/soya hulls (SH) in the ratios of 250:0, 167:83; 83:167 and 0:250 g, respectively, for treatments SH0, SH83, SH167 and SH250. Starch concentrations were 302, 248, 193 and 140g/kg DM, and NDF concentrations were 316, 355, 394 and 434g/kg DM, for treatments SHO, SH83, SH167 and SH250, respectively. Total eating time increased (p < 0.05) as SH inclusion increased, but total rumination time was unaffected. Digestibility of DM, organic matter and starch declined (p < 0.01) as SH inclusion increased, whilst digestibility of NDF and ADF increased (p < 0.01). Dry-matter intake tended to decline with increasing SH, whilst bodyweight, milk yield and fat and lactose concentrations were unaffected by treatment. Milk protein concentration decreased (p < 0.01) as SH level increased. Feed conversion efficiency improved (p < 0.05) as SH inclusion rose, but it was not possible to determine whether this was due to the increased fibre levels alone, or the favourable effect on rumen fermentation of decreasing starch levels. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A Bayesian method of classifying observations that are assumed to come from a number of distinct subpopulations is outlined. The method is illustrated with simulated data and applied to the classification of farms according to their level and variability of income. The resultant classification shows a greater diversity of technical charactersitics within farm types than is conventionally the case. The range of mean farm income between groups in the new classification is wider than that of the conventional method and the variability of income within groups is narrower. Results show that the highest income group in 2000 included large specialist dairy farmers and pig and poultry producers, whilst in 2001 it included large and small specialist dairy farms and large mixed dairy and arable farms. In both years the lowest income group is dominated by non-milk producing livestock farms.