50 resultados para Image Analysis. Co-located Microscopy
em CentAUR: Central Archive University of Reading - UK
Resumo:
A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Data such as digitized aerial photographs, electrical conductivity and yield are intensive and relatively inexpensive to obtain compared with collecting soil data by sampling. If such ancillary data are co-regionalized with the soil data they should be suitable for co-kriging. The latter requires that information for both variables is co-located at several locations; this is rarely so for soil and ancillary data. To solve this problem, we have derived values for the ancillary variable at the soil sampling locations by averaging the values within a radius of 15 m, taking the nearest-neighbour value, kriging over 5 m blocks, and punctual kriging. The cross-variograms from these data with clay content and also the pseudo cross-variogram were used to co-krige to validation points and the root mean squared errors (RMSEs) were calculated. In general, the data averaged within 15m and the punctually kriged values resulted in more accurate predictions.
Resumo:
A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3 s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9 h was 1.76 +/- 0.002 pA m(-2). (c) 2006 American Institute of Physics.
Resumo:
1. Population growth rate (PGR) is central to the theory of population ecology and is crucial for projecting population trends in conservation biology, pest management and wildlife harvesting. Furthermore, PGR is increasingly used to assess the effects of stressors. Image analysis that can automatically count and measure photographed individuals offers a potential methodology for estimating PGR. 2. This study evaluated two ways in which the PGR of Daphnia magna, exposed to different stressors, can be estimated using an image analysis system. The first method estimated PGR as the ratio of counts of individuals obtained at two different times, while the second method estimated PGR as the ratio of population sizes at two different times, where size is measured by the sum of the individuals' surface areas, i.e. total population surface area. This method is attractive if surface area is correlated with reproductive value (RV), as it is for D. magna, because of the theoretical result that PGR is the rate at which the population RV increases. 3. The image analysis system proved reliable and reproducible in counting populations of up to 440 individuals in 5 L of water. Image counts correlated well with manual counts but with a systematic underestimate of about 30%. This does not affect accuracy when estimating PGR as the ratio of two counts. Area estimates of PGR correlated well with count estimates, but were systematically higher, possibly reflecting their greater accuracy in the study situation. 4. Analysis of relevant scenarios suggested the correlation between RV and body size will generally be good for organisms in which fecundity correlates with body size. In these circumstances, area estimation of PGR is theoretically better than count estimation. 5. Synthesis and applications. There are both theoretical and practical advantages to area estimation of population growth rate when individuals' reproductive values are consistently well correlated with their surface areas. Because stressors may affect both the number and quality of individuals, area estimation of population growth rate should improve the accuracy of predicting stress impacts at the population level.
Resumo:
The distributions of times to first cell division were determined for populations of Escherichia coli stationary-phase cells inoculated onto agar media. This was accomplished by using automated analysis of digital images of individual cells growing on agar and calculation of the "box area ratio." Using approximately 300 cells per experiment, the mean time to first division and standard deviation for cells grown in liquid medium at 37 degrees C and inoculated on agar and incubated at 20 degrees C were determined as 3.0 h and 0.7 h, respectively. Distributions were observed to tail toward the higher values, but no definitive model distribution was identified. Both preinoculation stress by heating cultures at 50 degrees C and postinoculation stress by growth in the presence of higher concentrations of NaCl increased mean times to first division. Both stresses also resulted in an increase in the spread of the distributions that was proportional to the mean division time, the coefficient of variation being constant at approximately 0.2 in all cases. The "relative division time," which is the time to first division for individual cells expressed in terms of the cell size doubling time, was used as measure of the "work to be done" to prepare for cell division. Relative division times were greater for heat-stressed cells than for those growing under osmotic stress.
Resumo:
Root-knot nematodes (Meloidogyne spp.) are the most significant plant-parasitic nematodes that damage many crops all over the world. The free-living second stage juvenile (J2) is the infective stage that enters plants. The J2s move in the soil water films to reach the root zone. The bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes, is cosmopolitan, frequently encountered in many climates and environmental conditions and is considered promising for the control of Meloidogyne spp. The infection potential of P. penetrans to nematodes is well studied but not the attachment effects on the movement of root-knot nematode juveniles, image analysis techniques were used to characterize movement of individual juveniles with or without P. penetrans spores attached to their cuticles. Methods include the study of nematode locomotion based on (a) the centroid body point, (b) shape analysis and (c) image stack analysis. All methods proved that individual J2s without P. penetrans spores attached have a sinusoidal forward movement compared with those encumbered with spores. From these separate analytical studies of encumbered and unencumbered nematodes, it was possible to demonstrate how the presence of P. penetrans spores on a nematode body disrupted the normal movement of the nematode.
Resumo:
Measuring the retention, or residence time, of dosage forms to biological tissue is commonly a qualitative measurement, where no real values to describe the retention can be recorded. The result of this is an assessment that is dependent upon a user's interpretation of visual observation. This research paper outlines the development of a methodology to quantitatively measure, both by image analysis and by spectrophotometric techniques, the retention of material to biological tissues, using the retention of polymer solutions to ocular tissue as an example. Both methods have been shown to be repeatable, with the spectrophotometric measurement generating data reliably and quickly for further analysis.
Resumo:
This paper presents the PETS2009 outdoor crowd image analysis surveillance dataset and the performance evaluation of people counting, detection and tracking results using the dataset submitted to five IEEE Performance Evaluation of Tracking and Surveillance (PETS) workshops. The evaluation was carried out using well established metrics developed in the Video Analysis and Content Extraction (VACE) programme and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The comparative evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness and provides a brief analysis of the metrics themselves to provide further insights into the performance of the authors’ systems.
Resumo:
Polar lows are maritime meso-cyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the ERA-Interim (ERAI) reanalysis to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008-2011. First, the representation of a set of satellite observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analysed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850 hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite observed polar lows with a lifetime of at least 6 hours have an 850 hPa vorticity signature of a co-located mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implications of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.
Resumo:
Intact, enveloped coronavirus particles vary widely in size and contour, and are thus refractory to study by traditional structural means such as X-ray crystallography. Electron microscopy (EM) overcomes some problems associated with particle variability and has been an important tool for investigating coronavirus ultrastructure. However, EM sample preparation requires that the specimen be dried onto a carbon support film before imaging, collapsing internal particle structure in the case of coronaviruses. Moreover, conventional EM achieves image contrast by immersing the specimen briefly in heavy-metal-containing stain, which reveals some features while obscuring others. Electron cryomicroscopy (cryo-EM) instead employs a porous support film, to which the specimen is adsorbed and flash-frozen. Specimens preserved in vitreous ice over holes in the support film can then be imaged without additional staining. Cryo-EM, coupled with single-particle image analysis techniques, makes it possible to examine the size, structure and arrangement of coronavirus structural components in fully hydrated, native virions. Two virus purification procedures are described.
Resumo:
Nanometer metal particles of tailored size (3-5 nm) and composition prepared via inverse microemulsion were encapsulated by ultrathin coatings (<2.5 nm) of inorganic porous aerogels covered with surface -OH groups. These composite materials formed metastable colloids in solvent(s), and the organic surfactant molecules were subsequently removed without leading to aggregation (the ethanolic colloid solution was shown to be stable against flocculation for at least weeks). We demonstrate that the totally inorganic-based composite colloids, after the removal of surfactant, can be anchored to conventional solid supports (gamma-alumina, carbons) upon mixing. Application of a high temperature resulted in the formation of strong covalent linkages between the colloids and the support because of the condensation of surface groups at the interface. Detailed characterizations (X-ray diffraction (XRD), pore analysis, transmission electron microscopy (TEM), CO chemisorption) and catalytic testing (butane combustion) showed that there was no significant metal aggregation from the fine metal particles individually coated with porous aerogel oxide. Most of these metal sites on the coated nanoparticles with and without support are fully accessible by small molecules hence giving extremely active metal catalysts. Thus, the product and technology described may be suitable to synthesize these precursor entities of defined metal sizes (as inks) for wash coat/impregnation applications in catalysis. The advantages of developing inorganic nanocomposite chemical precursors are also discussed.
Resumo:
Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F-9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.
Resumo:
Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.
Resumo:
Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.