27 resultados para Ice Age

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of glacial till deposited since the Little Ice Age (LIA) maximum by two glaciers, North Bogbre at Svartisen and Corneliussen-breen at Okstindan, northern Norway, were obtained from transects running from the current glacier snout to the LIA (c. AD 1750) limit. The samples were analysed to determine their sediment magnetic properties, which display considerable variability. Significant trends in some magnetic parameters are evident with distance from the glacier margin and hence length of subaerial exposure. Magnetic susceptibility (X) decreases away from the contemporary snout, perhaps due to the weathering of ferrimagnetic minerals into antiferromagnetic forms, although this trend is generally not statistically significant. Trends in the ratios of soft IRM/hard IRM which are statistically significant support this hypothesis, suggesting that antiferromagnetic minerals are increasing relative to ferrimagnetic minerals towards the LIA maximum. Backfield ratios (IRM -100 mT/SIRM) also display a significant and strong trend towards magnetically harder behaviour with proximity to the LIA maximum. Thus, by employing a chronosequence approach, it may be possible to use sediment magnetics data as a tool for reconstructing glacier retreat in areas where more traditional techniques, such as lichenometry, are not applicable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Buordakh Massif of the Cherskiy Range of sub-arctic north east Siberia, Russia has a cold continental climate and supports over 80 glaciers. Despite previous research in the region, a georeferenced map of the glaciers has only recently been completed and an enhanced version of it is reproduced in colour here. The mountains of this region reach heights in excess of 3,000 m and the glaciers on their slopes range in size from 0.1 to 10.4 km2. The mapping has been compiled through the interpretation of Landsat 7 ETM+ satellite imagery from August 2001 which has been augmented by data from a field campaign undertaken at the same time. The glaciers of the region are of the cold, ‘firn-less’ continental type and their mass balance relies heavily on the formation of superimposed ice. Moraines which lie in front of the glaciers by up to a few kilometres are believed to date from the Little Ice Age (ca. 1550-1850 AD). Over half of the glaciers mapped have shown marked retreat from these moraines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

•In current models, the ecophysiological effects of CO2 create both woody thickening and terrestrial carbon uptake, as observed now, and forest cover and terrestrial carbon storage increases that took place after the last glacial maximum (LGM). Here, we aimed to assess the realism of modelled vegetation and carbon storage changes between LGM and the pre-industrial Holocene (PIH). •We applied Land Processes and eXchanges (LPX), a dynamic global vegetation model (DGVM), with lowered CO2 and LGM climate anomalies from the Palaeoclimate Modelling Intercomparison Project (PMIP II), and compared the model results with palaeodata. •Modelled global gross primary production was reduced by 27–36% and carbon storage by 550–694 Pg C compared with PIH. Comparable reductions have been estimated from stable isotopes. The modelled areal reduction of forests is broadly consistent with pollen records. Despite reduced productivity and biomass, tropical forests accounted for a greater proportion of modelled land carbon storage at LGM (28–32%) than at PIH (25%). •The agreement between palaeodata and model results for LGM is consistent with the hypothesis that the ecophysiological effects of CO2 influence tree–grass competition and vegetation productivity, and suggests that these effects are also at work today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice Age Art: Arrival of the Modern Mind was an exhibition at the British Museum from 27 February to 2 June 2013 exhibiting sculptures and engravings from the Ice Age of Europe and Eurasia, 40,000–10,000 years ago. It was accompanied by a lavishly illustrated book by Jill Cook with the same title, published by the British Museum Press. The exhibition was a sell-out, attracting considerable coverage in the press. Here I reflect critically on some aspects of the exhibition, exploring what such a display might tell us about ice age life, the modern mind and our present-day approach to displaying such objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes of the equilibrium-line altitude (ELA) since the end of the Little Ice Age (LIA) in eastern Nepal have been studied using glacier inventory data. The toe-to-headwall altitude ratios (THARs) for individual glaciers were calculated for 1992, and used to estimate the ELA in 1959 and at the end of the LIA. THAR for debris-free glaciers is found to be smaller than for debris-covered glaciers. The ELAs for debris-covered glaciers are higher than those for debris-free glaciers in eastern Nepal. There is considerable variation in the reconstructed change in ELA (ΔELA) between glaciers within specific regions and between regions. This is not related to climate gradients, but results from differences in glacier aspect: southeast- and south-facing glaciers show larger ΔELAs in eastern Nepal than north- or west-facing glaciers. The data suggest that the rate of ELA rise may have accelerated in the last few decades. The limited number of climate records from Nepal, and analyses using a simple ELA–climate model, suggest that the higher rate of the ΔELA between 1959 and 1992 is a result of increased warming that occurred after the 1970s at higher altitudes in Nepal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to effects of low precipitation and low atmospheric (CO2) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The effect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45°) mean change in forcing (LGM minus modern) is estimated to be small (–0.9 to +0.2 W m–2), especially when compared to nearly –20 W m–2 due to reflection from the extended ice sheets. Although the net effect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (–2.2 to –3.2 W m–2) to the radiative cooling effect of low atmospheric (CO2). Thus, the largest long-term climatic effect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO2) and high atmospheric dust loading may be mutually reinforcing due to multiple positive feedbacks, including the negative radiative forcing effect of dust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used Little Ice Age (LIA) trimlines and moraines to assess changes in South American glaciers over the last ∼140 years. We determined the extent and length of 640 glaciers during the LIA (∼ AD 1870) and 626 glaciers (the remainder having entirely disappeared) in 1986, 2001 and 2011. The calculated reduction in glacierized area between the LIA and 2011 is 4131 km2 (15.4%), with 660 km2 (14.2%) being lost from the Northern Patagonia Icefield (NPI), 1643 km2 (11.4%) from the Southern Patagonia Icefield (SPI) and 306 km2 (14.4%) from Cordillera Darwin. Latitude, size and terminal environment (calving or land-terminating) exert the greatest control on rates of shrinkage. Small, northerly, land-terminating glaciers shrank fastest. Annual rates of area loss increased dramatically after 2001 for mountain glaciers north of 52° S and the large icefields, with the NPI and SPI now shrinking at 9.4 km2 a–1 (0.23% a–1) and 20.5 km2 a–1 (0.15% a–1) respectively. The shrinkage of glaciers between 52° S and 54° S accelerated after 1986, and rates of shrinkage from 1986 to 2011 remained steady. Icefield outlet glaciers, isolated glaciers and ice caps south of 54° S shrank faster from 1986 to 2001 than they did from 2001 to 2011.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Buordakh Massif, in the Cherskiy Range of northeast Siberia, contains mountains over 3000 in and, despite its and climate, numerous glaciers. This paper presents a glacier inventory for the region and documents some 80 glaciers, which range in size from 0.1 to 10.4 km(2) (total glacierized area is ca. 70 km(2)). The inventory is based on mapping derived from Landsat 7 ETM+ satellite imagery from August 2001, augmented with data from field investigations obtained at that time. The glaciers in this region are of the 'firn-less,' cold, continental type, and their mass balance relies heavily on the formation of superimposed ice. The most recent glacier maximum extents have also been delineated, and these are believed to date from the Little Ice Age (ca. A.D. 1550-1850). Glacier areal extent has reduced by some 14.8 km(2) (ca. 17%) since this most. recent maximum. Of the 80 glaciers catalogued, 49 have undergone a measurable retreat from their most recent maximum extent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey-Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km(2) reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943-1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02-0.03 degrees Ca-1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glaciers occupy an area of similar to 1600 km(2) in the Caucasus Mountains. There is widespread evidence of retreat since the Little Ice Age, but an up-to-date regional assessment of glacier change is lacking. In this paper, satellite imagery (Landsat Thematic Mapper and Enhanced Thematic Mapper Plus) is used to obtain the terminus position of 113 glaciers in the central Caucasus in 1985 and 2000, using a manual delineation process based on a false-colour composite (bands 5, 4, 3). Measurements reveal that 94% of the glaciers have retreated, 4% exhibited no overall change and 2% advanced. The mean retreat rate equates to similar to 8 m a(-1), and maximum retreat rates approach similar to 38 m a(-1). The largest (>10 km(2)) glaciers retreated twice as much (similar to 12 m a(-1)) as the smallest (<1 km(2)) glaciers (similar to 6 m a(-1)), and glaciers at lower elevations generally retreated greater distances. Supraglacial debris cover has increased in association with glacier retreat, and the surface area of bare ice has reduced by similar to 10% between 1985 and 2000. Results are compared to declassified Corona imagery from the 1960s and 1970s and detailed field measurements and mass-balance data for Djankuat glacier, central Caucasus. It is concluded that the decrease in glacier area appears to be primarily driven by increasing temperatures since the 1970s and especially since the mid-1990s. Continued retreat could lead to considerable changes in glacier runoff, with implications for regional water resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hourly winter weather of the Last Glacial Maximum (LGM) is simulated using the Community Climate Model version 3 (CCM3) on a globally resolved T170 (75 km) grid. Results are compared to a longer LGM climatological run with the same boundary conditions and monthly saves. Hourly-scale animations are used to enhance interpretations. The purpose of the study is to explore whether additional insights into ice age conditions can be gleaned by going beyond the standard employment of monthly average model statistics to infer ice age weather and climate. Results for both LGM runs indicate a decrease in North Atlantic and increase in North Pacific cyclogenesis. Storm trajectories react to the mechanical forcing of the Laurentide Ice Sheet, with Pacific storms tracking over middle Alaska and northern Canada, terminating in the Labrador Sea. This result is coincident with other model results in also showing a significant reduction in Greenland wintertime precipitation – a response supported by ice core evidence. Higher-temporal resolution puts in sharper focus the close tracking of Pacific storms along the west coast of North America. This response is consistent with increased poleward heat transport in the LGM climatological run and could help explain “early” glacial warming inferred in this region from proxy climate records. Additional analyses shows a large increase in central Asian surface gustiness that support observational inferences that upper-level winds associated with Asian- Pacific storms transported Asian dust to Greenland during the LGM.