2 resultados para INVERSIONES EXTRANJERAS - CHILE - 2004-2006

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferometric Synthetic Aperture Radar (InSAR) measurements of surface deformation at Nyamuragira Volcano between 1996 and 2010 reveal a variety of co-eruptive and inter-eruptive signals. During 7 of the 8 eruptions in this period deformation was measured that is consistent with the emplacement of shallow near-vertical dykes feeding the eruptive fissures and associated with a NNW-trending fissure zone that traverses the summit caldera. Between eruptions the caldera and the summit part of this fissure zone subsided gradually (b3–5 cm/year). We also find evidence of post-eruption subsidence around the sites of the main vents of some flank eruptions (2002, 2004, 2006, and 2010). In the 6 months prior to the 2010 eruption a10-km wide zone centred on the caldera inflated by 1–2 cm. The low magnitude of this signal suggests that the presumed magma reservoir at 3–8 km depth contains highly compressible magma with little stored elastic strain energy. To the north of the caldera the fissure zone splits into WNW and NE branches around a zone that has a distinct InSAR signal. We interpret this zone to represent an elevated, 'stable' block of basement rocks buried by lavas within the Rift Zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new speleothem record of atmospheric Δ14C between 28 and 44 ka that offers considerable promise for resolving some of the uncertainty associated with existing radiocarbon calibration curves for this time period. The record is based on a comprehensive suite of AMS 14C ages, using new low-blank protocols, and U–Th ages using high precision MC-ICPMS procedures. Atmospheric Δ14C was calculated by correcting 14C ages with a constant dead carbon fraction (DCF) of 22.7 ± 5.9%, based on a comparison of stalagmite 14C ages with the IntCal04 (Reimer et al., 2004) calibration curve between 15 and 11 ka. The new Δ14C speleothem record shows similar structure and amplitude to that derived from Cariaco Basin foraminifera (Hughen et al., 2004, 2006), and the match is further improved if the latter is tied to the most recent Greenland ice core chronology (Svensson et al., 2008). These data are however in conflict with a previously published 14C data set for a stalagmite record from the Bahamas — GB-89-24-1 (Beck et al., 2001), which likely suffered from 14C analytical blank subtraction issues in the older part of the record. The new Bahamas speleothem ∆14C data do not show the extreme shifts between 44 and 40 ka reported in the previous study (Beck et al., 2001). Causes for the observed structure in derived atmospheric Δ14C variation based on the new speleothem data are investigated with a suite of simulations using an earth system model of intermediate complexity. Data-model comparison indicates that major fluctuations in atmospheric ∆14C during marine isotope stage 3 is primarily a function of changes in geomagnetic field intensity, although ocean–atmosphere system reorganisation also played a supporting role.