4 resultados para INTRALESIONAL VERAPAMIL
em CentAUR: Central Archive University of Reading - UK
Resumo:
CSRP3 or muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein and a mechanosensor in cardiac myocytes. MLP regulation and function was studied in cultured neonatal rat myocytes treated with pharmacological or mechanical stimuli. Either verapamil or BDM decreased nuclear MLP while phenylephrine and cyclic strain increased it. These results suggest that myocyte contractility regulates MLP subcellular localization. When RNA polymerase II was inhibited with alpha-amanitin, nuclear MLP was reduced by 30%. However, when both RNA polymerase I and II were inhibited with actinomycin D, there was a 90% decrease in nuclear MLP suggesting that its nuclear translocation is regulated by both nuclear and nucleolar transcriptional activity. Using cell permeable synthetic peptides containing the putative nuclear localization signal (NLS) of MLP, nuclear import of the protein in cultured rat neonatal myocytes was inhibited. The NLS of MLP also localizes to the nucleolus. Inhibition of nuclear translocation prevented the increased protein accumulation in response to phenylephrine. Furthermore, cyclic strain of myocytes after prior NLS treatment to remove nuclear MLP resulted in disarrayed sarcomeres. Increased protein synthesis and brain natriuretic peptide expression were also prevented suggesting that MLP is required for remodeling of the myo filaments and gene expression. These findings suggest that nucleocytoplasmic shuttling MLP plays an important role in the regulation of the myocyte remodeling and hypertrophy and is required for adaptation to hypertrophic stimuli. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+](cyt)) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+] cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+] cyt, and may function as peroxidases in vitro.
Resumo:
Background: Aberrant glomerular mesangial cell (MC) proliferation is a common finding in renal diseases. T-type calcium channels (T-CaCN) play an important role in the proliferation of a number of cell types, including vascular smooth muscle cells. The hypothesis that T-CaCN may play a role in the proliferation of human MC was investigated. Methods: The presence of T-CaCN in primary cultures of human MC was examined using voltage clamping and by RT-PCR. The effect of calcium channel inhibitors, and of siRNA directed against the Cav3.2 T-CaCN isoform, on MC proliferation was assessed using the microculture tetrazolium assay and nuclear BrdU incorporation. Results: Human MC express only the Cav3.2 T-CaCN isoform. Co-incubation of MC with a T-CaCN inhibitor (mibefradil, TH1177 or Ni2+) results in a concentration-dependent attenuation of proliferation. This effect cannot be attributed to direct drug-induced cytotoxicity or apoptosis and is not seen with verapamil, an L-type channel blocker. Transfection of MC with siRNA results in knockdown of T-CaCN Cav3.2 mRNA and a clear attenuation of MC proliferation. Conclusions: These results demonstrate for the first time an important role for T-CaCN in human MC proliferation. This could potentially lead to a novel therapy in the treatment of proliferative renal diseases.
Resumo:
Phenylephrine and noradrenaline (alpha-adrenergic agonism) or isoprenaline (beta-adrenergic agonism) stimulated protein synthesis rates, increased the activity of the atrial natriuretic factor gene promoter and activated mitogen-activated protein kinase (MAPK). The EC50 for MAPK activation by noradrenaline was 2-4 microM and that for isoprenaline was 0.2-0.3 microM. Maximal activation of MAPK by isoprenaline was inhibited by the beta-adrenergic antagonist, propranolol, whereas the activation by noradrenaline was inhibited by the alpha1-adrenergic antagonist, prazosin. FPLC on a Mono-Q column separated two peaks of MAPK (p42MAPK and p44MAPK) and two peaks of MAPK-activating activity (MEK) activated by isoprenaline or noradrenaline. Prolonged phorbol ester exposure partially down-regulated the activation of MAPK by noradrenaline but not by isoprenaline. This implies a role for protein kinase C in MAPK activation by noradrenaline but not isoprenaline. A role for cyclic AMP in activation of the MAPK pathway was eliminated when other agonists that elevate cyclic AMP in the cardiac myocyte did not activate MAPK. In contrast, MAPK was activated by exposure to ionomycin, Bay K8644 or thapsigargin that elevate intracellular Ca2+. Furthermore, depletion of extracellular Ca2+ concentrations with bis-(o-aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA) or blocking of the L-type Ca2+ channel with nifepidine or verapamil inhibited the response to isoprenaline without inhibiting the responses to noradrenaline. We conclude that alpha- and beta-adrenergic agonists can activate the MEK/MAPK pathway in the heart by different signalling pathways. Elevation of intracellular Ca2+ rather than cyclic AMP appears important in the activation of MAPK by isoprenaline in the cardiac myocyte.