87 resultados para INTRACELLULAR CALCIUM

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPARbeta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRalpha and RXRbeta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPAR beta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXR alpha, and RXR beta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. (C) 2007 by The American Society of Hematology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Peroxisome proliferator-activated receptor-(gamma) (PPAR(gamma)) is expressed in human platelets although in the absence of genomic regulation in these cells, its functions are unclear. OBJECTIVE: In the present study, we aimed to demonstrate the ability of PPAR(gamma) ligands to modulate collagen-stimulated platelet function and suppress activation of the glycoprotein VI (GPVI) signaling pathway. METHODS: Washed platelets were stimulated with PPAR(gamma) ligands in the presence and absence of PPAR(gamma) antagonist GW9662 and collagen-induced aggregation was measured using optical aggregometry. Calcium levels were measured by spectrofluorimetry in Fura-2AM-loaded platelets and tyrosine phosphorylation levels of receptor-proximal components of the GPVI signaling pathway were measured using immunoblot analysis. The role of PPAR(gamma) agonists in thrombus formation was assessed using an in vitro model of thrombus formation under arterial flow conditions. RESULTS: PPAR(gamma) ligands inhibited collagen-stimulated platelet aggregation that was accompanied by a reduction in intracellular calcium mobilization and P-selectin exposure. PPAR(gamma) ligands inhibited thrombus formation under arterial flow conditions. The incorporation of GW9662 reversed the inhibitory actions of PPAR(gamma) agonists, implicating PPAR(gamma) in the effects observed. Furthermore, PPAR(gamma) ligands were found to inhibit tyrosine phosphorylation levels of multiple components of the GPVI signaling pathway. PPAR(gamma) was found to associate with Syk and LAT after platelet activation. This association was prevented by PPAR(gamma) agonists, indicating a potential mechanism for PPAR(gamma) function in collagen-stimulated platelet activation. CONCLUSIONS: PPAR(gamma) agonists inhibit the activation of collagen-stimulation of platelet function through modulation of early GPVI signalling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Volatile anesthetics such as isoflurane and halothane have been in clinical use for many years and represent the group of drugs most commonly used to maintain general anesthesia. However, despite their widespread use, the molecular mechanisms by which these drugs exert their effects are not completely understood. Recently, a seemingly paradoxical effect of general anesthetics has been identified: the activation of peripheral nociceptors by irritant anesthetics. This mechanism may explain the hyperalgesic actions of inhaled anesthetics and their adverse effects in the airways. METHODS: To test the hypothesis that irritant inhaled anesthetics activate the excitatory ion-channel transient receptor potential (TRP)-A1 and thereby contribute to hyperalgesia and irritant airway effects, we used the measurement of intracellular calcium concentration in isolated cells in culture. For our functional experiments, we used models of isolated guinea pig bronchi to measure bronchoconstriction and withdrawal threshold to mechanical stimulation with von Frey filaments in mice. RESULTS: Irritant inhaled anesthetics activate TRPA1 expressed in human embryonic kidney cells and in nociceptive neurons. Isoflurane induces mechanical hyperalgesia in mice by a TRPA1-dependent mechanism. Isoflurane also induces TRPA1-dependent constriction of isolated bronchi. Nonirritant anesthetics do not activate TRPA1 and fail to produce hyperalgesia and bronchial constriction. CONCLUSIONS: General anesthetics induce a reversible loss of consciousness and render the patient unresponsive to painful stimuli. However, they also produce excitatory effects such as airway irritation and they contribute to postoperative pain. Activation of TRPA1 may contribute to these adverse effects, a hypothesis that remains to be tested in the clinical setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. APPROACH AND RESULTS: Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. CONCLUSIONS: This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg2+-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg2+-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg2+-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD’s beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular phar- macology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD’s relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeu- tics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent with modulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug’s action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD’s effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD’s therapeutic mechanism of action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: In cerebral arteries, nitric oxide (NO) release plays a key role in suppressing vasomotion. Our aim was to establish the pathways affected by NO in rat middle cerebral arteries. Methods: In isolated segments of artery, isometric tension and simultaneous measurements of either smooth muscle membrane potential or intracellular [Ca 2+ ] ([Ca 2+ ] SMC ) changes were recorded. Results: In the absence of L -NAME, asynchronous propagating Ca 2+ waves were recorded that were sensitive to block with ryanodine, but not nifedipine. L -NAME stimulated pronounced vasomotion and synchronous Ca 2+ oscillations with close temporal coupling between membrane potential, tone and [Ca 2+ ] SMC . If nifedipine was applied together with L -NAME, [Ca 2+ ] SMC decreased and synchronous Ca 2+ oscillations were lost, but asynchronous propagating Ca 2+ waves persisted. Vasomotion was similarly evoked by either iberiotoxin, or by ryanodine, and to a lesser extent by ODQ. Exogenous application of NONOate stimulated endothelium-independent hyperpolarization and relaxation of either L -NAME-induced or spontaneous arterial tone. NO-evoked hyperpolarization involved activation of BK Ca channels via ryanodine receptors (RYRs), with little involvement of sGC. Further, in whole cell mode, NO inhibited current through L-type voltage-gated Ca 2+ channels (VGCC), which was independent of both voltage and sGC. Conclusion: NO exerts sGC-independent actions at RYRs and at VGCC, both of which normally suppress cerebral artery myogenic tone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogens have been demonstrated to rapidly modulate calcium levels in a variety of cell types. However, the significance of estrogen-mediated calcium flux in neuronal cells is largely unknown. The relative importance of intra- and extracellular sources of calcium in estrogenic effects on neurons is also not well understood. Previously, we have demonstrated that membrane-limited estrogens, such as E-BSA given before an administration of a 2-hour pulse of 17beta-estradiol (E(2)), can potentiate the transcription mediated by E(2) from a consensus estrogen response element (ERE)-driven reporter gene. Inhibitors to signal transduction cascades given along with E-BSA or E(2) demonstrated that calcium flux is important for E-BSA-mediated potentiation of transcription in a transiently transfected neuroblastoma cell line. In this report, we have used inhibitors to different voltage-gated calcium channels (VGCCs) and to intracellular store receptors along with E-BSA in the first pulse or with E(2) in the second pulse to investigate the relative importance of these channels to estrogen-mediated transcription. Neither L- nor P-type VGCCs seem to play a role in estrogen action in these cells; while N-type VGCCs are important in both the non-genomic and genomic modes of estrogen action. Specific inhibitors also showed that the ryanodine receptor and the inositol trisphosphate receptor are important to E-BSA-mediated transcriptional potentiation. This report provides evidence that while intracellular stores of calcium are required to couple non-genomic actions of estrogen initiated at the membrane to transcription in the nucleus, extracellular sources of calcium are also important in both non-genomic and genomic actions of estrogens. Copyright (c) 2005 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Procedures for routine analysis of soil phosphorus (P) have been used for assessment of P status, distribution and P losses from cultivated mineral soils. No similar studies have been carried out on wetland peat soils. The objective was to compare extraction efficiency of ammonium lactate (PAL), sodium bicarbonate (P-Olsen), and double calcium lactate (P-DCaL) and P distribution in the soil profile of wetland peat soils. For this purpose, 34 samples of the 0-30, 30-60 and 60-90 cm layers were collected from peat soils in Germany, Israel, Poland, Slovenia, Sweden and the United Kingdom and analysed for P. Mean soil pH (CaCl2, 0.01 M) was 5.84, 5.51 and 5.47 in the 0-30, 30-60 and 60-90 cm layers, respectively. The P-DCaL was consistently about half the magnitude of either P-AL or P-Olsen. The efficiency of P extraction increased in the order P-DCaL < P-AL &LE; P-Olsen, with corresponding means (mg kg(-1)) for all soils (34 samples) of 15.32, 33.49 and 34.27 in 0-30 cm; 8.87, 17.30 and 21.46 in 30-60 cm; and 5.69, 14.00 and 21.40 in 60-90 cm. The means decreased with depth. When examining soils for each country separately, P-Olsen was relatively evenly distributed in the German, UK and Slovenian soils. P-Olsen was linearly correlated (r = 0.594, P = 0.0002) with pH, whereas the three P tests (except P-Olsen vs P-DCaL) significantly correlated with each other (P = 0.017850.0001). The strongest correlation (r = 0.617, P = 0.0001) was recorded for P-AL vs P-DCaL) and the two methods were inter-convertible using a regression equation: P-AL = -22.593 + 5.353 pH + 1.423 P-DCaL, R-2 = 0.550.