19 resultados para INNATE IMMUNE-SYSTEM
em CentAUR: Central Archive University of Reading - UK
Resumo:
Amid the flurry of grant writing and experimentation, statistical analysis sometimes gets less attention than it requires. Here, we describe fully the considerations that should go into the employment of the statistical two-sample t test.
Resumo:
Over the last 25 years, the effects of fatty acids on the immune system have been characterized using in vitro, animal and human studies. Advances in fatty acid biochemistry and molecular techniques have recently suggested new mechanisms by which fatty acids could potentially modify immune responses, including modification of the organization of cellular lipids and interaction with nuclear receptors. Possibilities for the clinical applications of n-3 PUFA are now developing. The present review focuses on the hypothesis that the anti-inflammatory properties of n-3 PUFA in the arterial wall may contribute to the protective effects of n-3 PUFA in CVD, as suggested by epidemiological and secondary prevention studies. Studies are just beginning to show that dietary n-3 PUFA can be incorporated into plaque lipid in human subjects, where they may influence the morphology and stability of the atherosclerotic lesion.
Resumo:
Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage.While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways.
Resumo:
Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.
Resumo:
The intestinal microbiota is a dynamic multifaceted ecosystem which has evolved a complex and mutually beneficial relationship with the mammalian host. The contribution to host fitness is evident, but in recent years it has become apparent that these commensal microorganisms may exert far more influence over health and disease than previously thought. The gut microbiota are implicated in many aspects of biological function, such as metabolism, angiogenesis and immune development: disruption, especially during the neonatal period, which may impose life-long penalty. Elimination of the microbiota appears difficult, but manipulation of the ratios and dominance of composite populations can be achieved by alterations in diet, rearing environment, antibiotics and/or probiotics. Components of the intestinal microbiota are frequently documented to affect normal function of the mucosal immune system in experimental animals and in domesticated, agricultural species. However, it is not always clear that the effects described are sufficiently well understood to provide a sound basis for commercial intervention. Some microbial interventions may be beneficial to the host under particular circumstances, while detrimental during others. It is essential that we further our understanding of the complex and intricate host-commensal relationship to avoid causing more long-term damage than advantage
Resumo:
Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in earlylife environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoorhoused pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.
Resumo:
Preface. Iron is considered to be a minor element employed, in a variety of forms, by nearly all living organisms. In some cases, it is utilised in large quantities, for instance for the formation of magnetosomes within magnetotactic bacteria or during use of iron as a respiratory donor or acceptor by iron oxidising or reducing bacteria. However, in most cases the role of iron is restricted to its use as a cofactor or prosthetic group assisting the biological activity of many different types of protein. The key metabolic processes that are dependent on iron as a cofactor are numerous; they include respiration, light harvesting, nitrogen fixation, the Krebs cycle, redox stress resistance, amino acid synthesis and oxygen transport. Indeed, it is clear that Life in its current form would be impossible in the absence of iron. One of the main reasons for the reliance of Life upon this metal is the ability of iron to exist in multiple redox states, in particular the relatively stable ferrous (Fe2+) and ferric (Fe3+) forms. The availability of these stable oxidation states allows iron to engage in redox reactions over a wide range of midpoint potentials, depending on the coordination environment, making it an extremely adaptable mediator of electron exchange processes. Iron is also one of the most common elements within the Earth’s crust (5% abundance) and thus is considered to have been readily available when Life evolved on our early, anaerobic planet. However, as oxygen accumulated (the ‘Great oxidation event’) within the atmosphere some 2.4 billion years ago, and as the oceans became less acidic, the iron within primordial oceans was converted from its soluble reduced form to its weakly-soluble oxidised ferric form, which precipitated (~1.8 billion years ago) to form the ‘banded iron formations’ (BIFs) observed today in Precambrian sedimentary rocks around the world. These BIFs provide a geological record marking a transition point away from the ancient anaerobic world towards modern aerobic Earth. They also indicate a period over which the bio-availability of iron shifted from abundance to limitation, a condition that extends to the modern day. Thus, it is considered likely that the vast majority of extant organisms face the common problem of securing sufficient iron from their environment – a problem that Life on Earth has had to cope with for some 2 billion years. This struggle for iron is exemplified by the competition for this metal amongst co-habiting microorganisms who resort to stealing (pirating) each others iron supplies! The reliance of micro-organisms upon iron can be disadvantageous to them, and to our innate immune system it represents a chink in the microbial armour, offering an opportunity that can be exploited to ward off pathogenic invaders. In order to infect body tissues and cause disease, pathogens must secure all their iron from the host. To fight such infections, the host specifically withdraws available iron through the action of various iron depleting processes (e.g. the release of lactoferrin and lipocalin-2) – this represents an important strategy in our defence against disease. However, pathogens are frequently able to deploy iron acquisition systems that target host iron sources such as transferrin, lactoferrin and hemoproteins, and thus counteract the iron-withdrawal approaches of the host. Inactivation of such host-targeting iron-uptake systems often attenuates the pathogenicity of the invading microbe, illustrating the importance of ‘the battle for iron’ in the infection process. The role of iron sequestration systems in facilitating microbial infections has been a major driving force in research aimed at unravelling the complexities of microbial iron transport processes. But also, the intricacy of such systems offers a challenge that stimulates the curiosity. One such challenge is to understand how balanced levels of free iron within the cytosol are achieved in a way that avoids toxicity whilst providing sufficient levels for metabolic purposes – this is a requirement that all organisms have to meet. Although the systems involved in achieving this balance can be highly variable amongst different microorganisms, the overall strategy is common. On a coarse level, the homeostatic control of cellular iron is maintained through strict control of the uptake, storage and utilisation of available iron, and is co-ordinated by integrated iron-regulatory networks. However, much yet remains to be discovered concerning the fine details of these different iron regulatory processes. As already indicated, perhaps the most difficult task in maintaining iron homeostasis is simply the procurement of sufficient iron from external sources. The importance of this problem is demonstrated by the plethora of distinct iron transporters often found within a single bacterium, each targeting different forms (complex or redox state) of iron or a different environmental condition. Thus, microbes devote considerable cellular resource to securing iron from their surroundings, reflecting how successful acquisition of iron can be crucial in the competition for survival. The aim of this book is provide the reader with an overview of iron transport processes within a range of microorganisms and to provide an indication of how microbial iron levels are controlled. This aim is promoted through the inclusion of expert reviews on several well studied examples that illustrate the current state of play concerning our comprehension of how iron is translocated into the bacterial (or fungal) cell and how iron homeostasis is controlled within microbes. The first two chapters (1-2) consider the general properties of microbial iron-chelating compounds (known as ‘siderophores’), and the mechanisms used by bacteria to acquire haem and utilise it as an iron source. The following twelve chapters (3-14) focus on specific types of microorganism that are of key interest, covering both an array of pathogens for humans, animals and plants (e.g. species of Bordetella, Shigella, , Erwinia, Vibrio, Aeromonas, Francisella, Campylobacter and Staphylococci, and EHEC) as well as a number of prominent non-pathogens (e.g. the rhizobia, E. coli K-12, Bacteroides spp., cyanobacteria, Bacillus spp. and yeasts). The chapters relay the common themes in microbial iron uptake approaches (e.g. the use of siderophores, TonB-dependent transporters, and ABC transport systems), but also highlight many distinctions (such as use of different types iron regulator and the impact of the presence/absence of a cell wall) in the strategies employed. We hope that those both within and outside the field will find this book useful, stimulating and interesting. We intend that it will provide a source for reference that will assist relevant researchers and provide an entry point for those initiating their studies within this subject. Finally, it is important that we acknowledge and thank wholeheartedly the many contributors who have provided the 14 excellent chapters from which this book is composed. Without their considerable efforts, this book, and the understanding that it relays, would not have been possible. Simon C Andrews and Pierre Cornelis
Resumo:
Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.
Resumo:
Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function, using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of IL-1β, IL-6, TNF-α, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1β production, but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-α and IL-12 production. Monocyte-depletion significantly reduced the impact of LcS on lymphocyte activation, cytokine production and NK cell activity. In conclusion, LcS preferentially activated cytotoxic lymphocytes in both the innate and specific immune system, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both pro-inflammatory and anti-inflammatory cytokine production in the absence of LPS, but inhibited LPS-induced cytokine production in some cases. Monocytes play an important role in LcS-induced immunological responses.
Resumo:
Fatty acids have diverse roles in all cells. They are important as a source of energy, as structural components of cell membranes, as signalling molecules and as precursors for the synthesis of eicosanoids. Recent research has suggested that the organization of fatty acids into distinct cellular pools has a particularly important role in cells of the immune system and that forms of lipid trafficking exist, which are as yet poorly understood. This Review examines the nature and regulation of cellular lipid pools in the immune system, their delivery of fatty acids or fatty acid derivatives to specific locations and their potential role in health and disease.
Resumo:
Purpose of review This review critically evaluates recent studies investigating the effects of fatty acids on immune and inflammatory responses in both healthy individuals and in patients with inflammatory diseases, with some reference to animal studies where relevant. It examines recent findings describing the cellular and molecular basis for the modulation of immune function by fatty acids. The newly emerging area of diet-genotype interactions will also be discussed, with specific reference to the anti-inflammatory effects of fish oil. Recent findings Fatty acids are participants in many intracellular signalling pathways. They act as ligands for nuclear receptors regulating a host of cell responses, they influence the stability of lipid rafts, and modulate eicosanoid metabolism in cells of the immune system. Recent findings suggest that some or all of these mechanisms may be involved in the modulation of immune function by fatty acids. Summary Human studies investigating the relationship between dietary fatty acids and some aspects of the immune response have been disappointingly inconsistent. This review presents the argument that most studies have not been adequately powered to take into account the influence of variation (genotypic or otherwise) on parameters of immune function. There is well-documented evidence that fatty acids modulate T lymphocyte activation, and recent findings describe a range of potential cellular and molecular mechanisms. However, there are still many questions remaining, particularly with respect to the roles of nuclear receptors, for which fatty acids act as ligands, and the modulation of eicosanoid synthesis, for which fatty acids act as precursors.
Resumo:
There is a growing awareness that the gut microbiota and an appropriately functioning immune system play an important role in maintaining human health. Recent population statistics have highlighted some worrying trends, specifically that there is a growing burden of immunological disease in Western populations, that Western populations are ageing, and that obesity, with its strong inflammatory component, is reaching epidemic proportions.
Resumo:
Background The gut and immune system form a complex integrated structure that has evolved to provide effective digestion and defence against ingested toxins and pathogenic bacteria. However, great variation exists in what is considered normal healthy gut and immune function. Thus, whilst it is possible to measure many aspects of digestion and immunity, it is more difficult to interpret the benefits to individuals of variation within what is considered to be a normal range. Nevertheless, it is important to set standards for optimal function for use both by the consumer, industry and those concerned with the public health. The digestive tract is most frequently the object of functional and health claims and a large market already exists for gut-functional foods worldwide. Aim To define normal function of the gut and immune system and describe available methods of measuring it. Results We have defined normal bowel habit and transit time, identified their role as risk factors for disease and how they may be measured. Similarly, we have tried to define what is a healthy gut flora in terms of the dominant genera and their metabolism and listed the many, varied and novel methods for determining these parameters. It has proved less easy to provide boundaries for what constitutes optimal or improved gastric emptying, gut motility, nutrient and water absorption and the function of organs such as the liver, gallbladder and pancreas. The many tests of these functions are described. We have discussed gastrointestinal well being. Sensations arising from the gut can be both pleasant and unpleasant. However, the characteristics of well being are ill defined and merge imperceptibly from acceptable to unacceptable, a state that is subjective. Nevertheless, we feel this is an important area for future work and method development. The immune system is even more difficult to make quantitative judgements about. When it is defective, then clinical problems ensure, but this is an uncommon state. The innate and adaptive immune systems work synergistically together and comprise many cellular and humoral factors. The adaptive system is extremely sophisticated and between the two arms of immunity there is great redundancy, which provides robust defences. New aspects of immune function are discovered regularly. It is not clear whether immune function can be "improved". Measuring aspects of immune function is possible but there is no one test that will define either the status or functional capacity of the immune system. Human studies are often limited by the ability to sample only blood or secretions such as saliva but it should be remembered that only 2% of lymphocytes circulate at any given time, which limits interpretation of data. We recommend assessing the functional capacity of the immune system by: measuring specific cell functions ex vivo, measuring in vivo responses to challenge, e. g. change in antibody in blood or response to antigens, determining the incidence and severity of infection in target populations during naturally occurring episodes or in response to attenuated pathogens.
Resumo:
Consumption of diets rich in monounsaturated fatty acids (MUFAs) has been linked with a low prevalence of atherosclerosis and there has been great interest in the effects of MUFAs on lipoprotein metabolism. Less attention has been paid to the effects of MUFAs on the immune system, yet cells of the immune system are an inherent part of the inflammatory events involved in atherosclerosis and several animal studies showed that olive oil has some potent immunomodulatory actions. We therefore considered it important to investigate the effects of chronic consumption of MUFAs on several immune cell functions in healthy humans. Healthy middle-aged males entered a doubleblind, randomized, controlled trial in which they consumed either a MUFA diet or a control diet for 2 mo. There was a significant decrease in the expression of intercellular adhesion molecule 1 by peripheral blood mononuclear cells from subjects consuming the MUFA diet. Consumption of the MUFA diet did not affect natural killer cell activity or proliferation of mitogen-stimulated leukocytes. The effects of a MUFA-rich diet on adhesion molecule expression may have implications for the influence of dietary fat on inflammatory diseases, including atherosclerosis.