19 resultados para INFECTIOUS DISEASE
em CentAUR: Central Archive University of Reading - UK
Resumo:
It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain.Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications,limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.
Resumo:
It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain. Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications, limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.
Resumo:
At present, there is a clarion call for action on climate change across the global health landscape. At the recent WHO-sponsored conference on health and climate (held in Geneva, Switzerland, on Aug 27–29, 2014) and the UN Climate Summit (New York, USA, on Sept 23, 2014), participants were encouraged to act decisively to change the current trajectory of climate disruption. Health inequalities, including those related to infectious diseases, have now been pushed to centre stage. This approach represents a step-change in thinking. But as we are urged toward collective action, is it time to rethink our approach to research, especially in relation to climate change and infectious disease?
Resumo:
Background Arboviruses have overlapping geographical distributions and can cause symptoms that coincide with more common infections. Therefore, arbovirus infections are often neglected by travel diagnostics. Here, we assessed the potential of syndrome-based approaches for diagnosis and surveillance of neglected arboviral diseases in returning travelers. Method To map the patients high at risk of missed clinical arboviral infections we compared the quantity of all arboviral diagnostic requests by physicians in the Netherlands, from 2009 through 2013, with a literature-based assessment of the travelers’ likely exposure to an arbovirus. Results 2153 patients, with travel and clinical history were evaluated. The diagnostic assay for dengue virus (DENV) was the most commonly requested (86%). Of travelers returning from Southeast Asia with symptoms compatible with chikungunya virus (CHIKV), only 55% were tested. For travelers in Europe, arbovirus diagnostics were rarely requested. Over all, diagnostics for most arboviruses were requested only on severe clinical presentation. Conclusion Travel destination and syndrome were used inconsistently for triage of diagnostics, likely resulting in vast under-diagnosis of arboviral infections of public health significance. This study shows the need for more awareness among physicians and standardization of syndromic diagnostic algorithms
Resumo:
Although in developing countries an apolipoprotein E4 (apoE4) genotype may offer an evolutionary advantage, as it has been shown to offer protection against certain infectious disease, in Westernised societies it is associated with increased morbidity and mortality, and represents a significant risk factor for cardiovascular disease, late-onset Alzheimer's disease and other chronic disorders. ApoE is an important modulator of many stages of lipoprotein metabolism and traditionally the increased risk was attributed to higher lipid levels in E4 carriers. However, more recent evidence demonstrates the multifunctional nature of the apoE protein and the fact that the impact of genotype on disease risk may be in large part due to an impact on oxidative status or the immunomodulatory/anti-inflammatory properties of apoE. An increasing number of studies in cell lines, targeted replacement rodents and human volunteers indicate higher oxidative stress and a more pro-inflammatory state associated with the F,4 allele. The impact of genotype on the antioxidant and immunomodulatory/anti-inflammatory properties of apoE is the focus of the current review. Furthermore, current information on the impact of environment (diet, exercise, smoking status, alcohol) on apoE genotype-phenotype associations are discussed with a view to identifying particular lifestyle strategies that could be adapted to counteract the 'at-risk' E4 genotype.
Resumo:
The emergence and spread of infectious diseases reflects the interaction of ecological and economic factors within an adaptive complex system. We review studies that address the role of economic factors in the emergence and spread of infectious diseases and identify three broad themes. First, the process of macro-economic growth leads to environmental encroaching, which is related to the emergence of infectious diseases. Second, there are a number of mutually reinforcing processes associated with the emergence/spread of infectious diseases. For example, the emergence and spread of infectious diseases can cause significant economic damages, which in turn may create the conditions for further disease spread. Also, the existence of a mutually reinforcing relationship between global trade and macroeconomic growth amplifies the emergence/spread of infectious diseases. Third, microeconomic approaches to infectious disease point to the adaptivity of human behavior, which simultaneously shapes the course of epidemics and responds to it. Most of the applied research has been focused on the first two aspects, and to a lesser extent on the third aspect. With respect to the latter, there is a lack of empirical research aimed at characterizing the behavioral component following a disease outbreak. Future research should seek to fill this gap and develop hierarchical econometric models capable of integrating both macro and micro-economic processes into disease ecology.
Resumo:
Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.
Resumo:
This study compares associations between demographic profiles, long bone lengths, bone mineral content, and frequencies of stress indicators in the preadult populations of two medieval skeletal assemblages from Denmark. One is from a leprosarium, and thus probably represents a disadvantaged group (Naestved). The other comes from a normal, and in comparison rather privileged, medieval community (AEbelholt). Previous studies of the adult population indicated differences between the two skeletal collections with regard to mortality, dental size, and metabolic and specific infectious disease. The two samples were analyzed against the view known as the "osteological paradox" (Wood et al. [1992] Curr. Anthropol. 33:343-370), according to which skeletons displaying pathological modification are likely to represent the healthier individuals of a population, whereas those without lesions would have died without acquiring modifications as a result of a depressed immune response. Results reveal that older age groups among the preadults from Naestved are shorter and have less bone mineral content than their peers from AEbelholt. On average, the Naestved children have a higher prevalence of stress indicators, and in some cases display skeletal signs of leprosy. This is likely a result of the combination of compromised health and social disadvantage, thus supporting a more traditional interpretation. The study provides insights into the health of children from two different biocultural settings of medieval Danish society and illustrates the importance of comparing samples of single age groups.
Resumo:
Over the last 50 years, Spanish Atlantic salmon (Salmo salar) populations have been in decline. In order to bolster these populations, rivers were stocked with fish of northern European origin during the period 1974-1996, probably also introducing the furunculosis-inducing pathogen, Aeromonas salmonicida. Here we assess the relative importance of processes influencing mitochondrial (mt)DNA variability in these populations from 1948 to 2002. Genetic material collected over this period from four rivers in northern Spain (Cantabria) was used to detect variability at the mtDNA ND1 gene. Before stocking, a single haplotype was found at high frequency (0.980). Following stocking, haplotype diversity (h) increased in all rivers (mean h before stocking was 0.041, and 0.245 afterwards). These increases were due principally to the dramatic increase in frequency of a previously very low frequency haplotype, reported at higher frequencies in northern European populations proximate to those used to stock Cantabrian rivers. Genetic structuring increased after stocking: among-river differentiation was low before stocking (1950s/1960s Phi(ST) = -0.00296-0.00284), increasing considerably at the height of stocking (1980s Phi(ST) = 0.18932) and decreasing post-stocking (1990s/2002 Phi(ST) = 0.04934-0.03852). Gene flow from stocked fish therefore seems to have had a substantial role in increasing mtDNA variability. Additionally, we found significant differentiation between individuals that had probably died from infectious disease and apparently healthy, angled fish, suggesting a possible role for pathogen-driven selection of mtDNA variation. Our results suggest that stocking with non-native fish may increase genetic diversity in the short term, but may not reverse population declines.
Resumo:
Worldwide, the population is aging, with estimates of 1 billion people aged 60 y or over within the next 20 y. With aging comes a reduction in overall health and increased morbidity and mortality due to infectious disease. Mortality due to gastrointestinal infections is up to 400 times higher in the elderly compared with younger adults. Recent studies have shown that the gut microbiota changes in old age, with an increased number of bacterial groups represented in the predominant elderly gut microbiota. This change in species "evenness" coincides with parallel changes in immune function, diet, and lifestyle and may contribute to disease susceptibility and severity in old age. The intestinal microbiota may thus be identified as an important target for improving health through reduced disease risk. Here, the application of prebiotics, especially the inulin-type fructans, and synbiotics (prebiotics combined with efficacious probiotic strains) will be discussed in terms of microbiota modulation and impact on disease risk in the aged population. Recent human intervention studies have confirmed the microbiota modulatory capability of the inulin-type fructans in the elderly and there is some evidence for reduced risk of disease. However, there is a need for more and larger human intervention studies to determine the efficacy of prebiotics in the elderly, particularly studies that take advantage of recent high resolution analytical methodologies like metabonomics, to shed light on possible prebiotic mechanisms of action.
Resumo:
Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.
Resumo:
Foot and mouth disease (FMD) is a major threat, not only to countries whose economies rely on agricultural exports, but also to industrialised countries that maintain a healthy domestic livestock industry by eliminating major infectious diseases from their livestock populations. Traditional methods of controlling diseases such as FMD require the rapid detection and slaughter of infected animals, and any susceptible animals with which they may have been in contact, either directly or indirectly. During the 2001 epidemic of FMD in the United Kingdom (UK), this approach was supplemented by a culling policy driven by unvalidated predictive models. The epidemic and its control resulted in the death of approximately ten million animals, public disgust with the magnitude of the slaughter, and political resolve to adopt alternative options, notably including vaccination, to control any future epidemics. The UK experience provides a salutary warning of how models can be abused in the interests of scientific opportunism.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
Natural exposure to prion disease is likely to occur throughout successive challenges, yet most experiments focus on single large doses of infectious material. We analyze the results from an experiment in which rodents were exposed to multiple doses of feed contaminated with the scrapie agent. We formally define hypotheses for how the doses combine in terms of statistical models. The competing hypotheses are that only the total dose of infectivity is important (cumulative model), doses act independently, or a general alternative that interaction between successive doses occurs (to raise or lower the risk of infection). We provide sample size calculations to distinguish these hypotheses. In the experiment, a fixed total dose has a significantly reduced probability of causing infection if the material is presented as multiple challenges, and as the time between challenges lengthens. Incubation periods are shorter and less variable if all material is consumed on one occasion. We show that the probability of infection is inconsistent with the hypothesis that each dose acts as a cumulative or independent challenge. The incubation periods are inconsistent with the independence hypothesis. Thus, although a trend exists for the risk of infection with prion disease to increase with repeated doses, it does so to a lesser degree than is expected if challenges combine independently or in a cumulative manner.