28 resultados para INDIVIDUAL SPATIAL CHOICE
em CentAUR: Central Archive University of Reading - UK
Resumo:
The potential risk of agricultural pesticides to mammals typically depends on internal concentrations within individuals, and these are determined by the amount ingested and by absorption, distribution, metabolism, and excretion (ADME). Pesticide residues ingested depend, amongst other things, on individual spatial choices which determine how much and when feeding sites and areas of pesticide application overlap, and can be calculated using individual-based models (IBMs). Internal concentrations can be calculated using toxicokinetic (TK) models, which are quantitative representations of ADME processes. Here we provide a population model for the wood mouse (Apodemus sylvaticus) in which TK submodels were incorporated into an IBM representation of individuals making choices about where to feed. This allows us to estimate the contribution of individual spatial choice and TK processes to risk. We compared the risk predicted by four IBMs: (i) “AllExposed-NonTK”: assuming no spatial choice so all mice have 100% exposure, no TK, (ii) “AllExposed-TK”: identical to (i) except that the TK processes are included where individuals vary because they have different temporal patterns of ingestion in the IBM, (iii) “Spatial-NonTK”: individual spatial choice, no TK, and (iv) “Spatial-TK”: individual spatial choice and with TK. The TK parameters for hypothetical pesticides used in this study were selected such that a conventional risk assessment would fail. Exposures were standardised using risk quotients (RQ; exposure divided by LD50 or LC50). We found that for the exposed sub-population including either spatial choice or TK reduced the RQ by 37–85%, and for the total population the reduction was 37–94%. However spatial choice and TK together had little further effect in reducing RQ. The reasons for this are that when the proportion of time spent in treated crop (PT) approaches 1, TK processes dominate and spatial choice has very little effect, and conversely if PT is small spatial choice dominates and TK makes little contribution to exposure reduction. The latter situation means that a short time spent in the pesticide-treated field mimics exposure from a small gavage dose, but TK only makes a substantial difference when the dose was consumed over a longer period. We concluded that a combined TK-IBM is most likely to bring added value to the risk assessment process when the temporal pattern of feeding, time spent in exposed area and TK parameters are at an intermediate level; for instance wood mice in foliar spray scenarios spending more time in crop fields because of better plant cover.
Resumo:
Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n=25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject’s connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic-cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior.
Resumo:
The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo
Resumo:
Northern Hemisphere cyclone activity is assessed by applying an algorithm for the detection and tracking of synoptic scale cyclones to mean sea level pressure data. The method, originally developed for the Southern Hemisphere, is adapted for application in the Northern Hemisphere winter season. NCEP-Reanalysis data from 1958/59 to 1997/98 are used as input. The sensitivities of the results to particular parameters of the algorithm are discussed for both case studies and from a climatological point of view. Results show that the choice of settings is of major relevance especially for the tracking of smaller scale and fast moving systems. With an appropriate setting the algorithm is capable of automatically tracking different types of cyclones at the same time: Both fast moving and developing systems over the large ocean basins and smaller scale cyclones over the Mediterranean basin can be assessed. The climatology of cyclone variables, e.g., cyclone track density, cyclone counts, intensification rates, propagation speeds and areas of cyclogenesis and -lysis gives detailed information on typical cyclone life cycles for different regions. The lowering of the spatial and temporal resolution of the input data from full resolution T62/06h to T42/12h decreases the cyclone track density and cyclone counts. Reducing the temporal resolution alone contributes to a decline in the number of fast moving systems, which is relevant for the cyclone track density. Lowering spatial resolution alone mainly reduces the number of weak cyclones.
Resumo:
The Iowa gambling task (IGT) is one of the most influential behavioral paradigms in reward-related decision making and has been, most notably, associated with ventromedial prefrontal cortex function. However, performance in the IGT relies on a complex set of cognitive subprocesses, in particular integrating information about the outcome of choices into a continuously updated decision strategy under ambiguous conditions. The complexity of the task has made it difficult for neuroimaging studies to disentangle the underlying neurocognitive processes. In this study, we used functional magnetic resonance imaging in combination with a novel adaptation of the task, which allowed us to examine separately activation associated with the moment of decision or the evaluation of decision outcomes. Importantly, using whole-brain regression analyses with individual performance, in combination with the choice/outcome history of individual subjects, we aimed to identify the neural overlap between areas that are involved in the evaluation of outcomes and in the progressive discrimination of the relative value of available choice options, thus mapping the two fundamental cognitive processes that lead to adaptive decision making. We show that activation in right ventromedial and dorsolateral prefrontal cortex was predictive of adaptive performance, in both discriminating disadvantageous from advantageous decisions and confirming negative decision outcomes. We propose that these two prefrontal areas mediate shifting away from disadvantageous choices through their sensitivity to accumulating negative outcomes. These findings provide functional evidence of the underlying processes by which these prefrontal subregions drive adaptive choice in the task, namely through contingency-sensitive outcome evaluation.
Resumo:
We present a procedure for estimating two quantities defining the spatial externality in discrete-choice commonly referred to as 'the neighbourhood effect'. One quantity, the propensity for neighbours to make the same decision, reflects traditional preoccupations; the other quantity, the magnitude of the neighbourhood itself, is novel. Because both quantities have fundamental bearing on the magnitude of the spatial externality, it is desirable to have a robust algorithm for their estimation. Using recent advances in Bayesian estimation and model comparison, we devise such an algorithm and illustrate its application to a sample of northern-Filipino smallholders. We determine that a significant, positive, neighbourhood effect exists; that, among the 12 geographical units comprising the sample, the neighbourhood spans a three-unit radius; and that policy prescriptions are significantly altered when calculations account for the spatial externality.
Resumo:
Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.
Resumo:
Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Inhibition has generally proved hard to study behaviorally, because it results in no measurable output. The effect of distractors on the shape of oculomotor and manual trajectories provide evidence of such inhibition. Individual saccades may deviate initially either towards, or away from, a competing distractor - the direction and extent of this deviation depends upon saccade latency, target predictability and the target to distractor separation. The experiment reported here used these effects to show how inhibition of distractor locations develops over time. Distractors could be presented at various distances from unpredictable and predictable targets in two separate experiments. The deviation of saccade trajectories was compared between trials with and without distractors. Inhibition was measured by saccade trajectory deviation. Inhibition was found to increase as the distractor distance from target decreased but was found to increase with saccade latency at all distractor distances (albeit to different peaks). Surprisingly, no differences were found between unpredictable and predictable targets perhaps because our saccade latencies were generally long (similar to 260-280 ms.). We conclude that oculomotor inhibition of saccades to possible target objects involves the same mechanisms for all distractor distances and target types. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The spatial and temporal effect of distractor related inhibition on stimulus elicited (reflexive) and goal driven (voluntary) saccades, was examined using saccade trajectory deviations as a measure. Subjects made voluntary and reflexive saccades to a target location on the vertical midline, while the distance of a distractor from the target was systematically manipulated. The trajectory curvature of both voluntary and reflexive saccades was found to be subject to individual differences. Saccade curvature was found to decrease monotonically with increasing distractor distance from target for some subjects while for others no reduction in curvature or even an increase was found. These results could not be explained by latency differences or landing position effects. The different patterns of distractor effects on saccade trajectories suggest the additional influence of a non-spatial inhibitory mechanism. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Inhibition is intimately involved in the ability to select a target for a goal-directed movement. The effect of distracters on the deviation of oculomotor trajectories and landing positions provides evidence of such inhibition. individual saccade trajectories and landing positions may deviate initially either towards, or away from, a competing distracter-the direction and extent of this deviation depends upon saccade latency and the target to distracter separation. However, the underlying commonality of the sources of oculomotor inhibition has not been investigated. Here we report the relationship between distracter-related deviation of saccade trajectory, landing position and saccade latency. Observers saccaded to a target which could be accompanied by a distracter shown at various distances from very close (10 angular degrees) to far away (120 angular degrees). A fixation-gap paradigm was used to manipulate latency independently of the influence of competing distracters. When distracters were close to the target, saccade trajectory and landing position deviated toward the distracter position, while at greater separations landing position was always accurate but trajectories deviated away from the distracters. Different spatial patterns of deviations across latency were found. This pattern of results is consistent with the metrics of the saccade reflecting coarse pooling of the ongoing activity at the distracter location: saccade trajectory reflects activity at saccade initiation while landing position reveals activity at saccade end. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Two experiments investigated the influence of implicit memory on consumer choice for brands with varying levels of familiarity. Priming was measured using a consideration-choice task, developed by Coates, Butler and Berry (2004). Experiment 1 employed a coupon-rating task at encoding that required participants to meaningfully process individual brand names, to assess whether priming could affect participants' final (preferred) choices for familiar brands. Experiment 2 used this same method to assess the impact of implicit memory on consideration and choice for unknown and leader brands, presented in conjunction with familiar competitors. Significant priming was obtained in both experiments, and was shown to directly influence final choice in the case of familiar and highly familiar leader brands. Moreover, it was shown that a single prior exposure could lead participants to consider buying an unknown, and indeed fictitious, brand. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The spatial distribution of CO2 level in a classroom carried out in previous field work research has demonstrated that there is some evidence of variations in CO2 concentration in a classroom space. Significant fluctuations in CO2 concentration were found at different sampling points depending on the ventilation strategies and environmental conditions prevailing in individual classrooms. However, how these variations are affected by the emitting sources and the room air movement remains unknown. Hence, it was concluded that detailed investigation of the CO2 distribution need to be performed on a smaller scale. As a result, it was decided to use an environmental chamber with various methods and rates of ventilation, for the same internal temperature and heat loads, to study the effect of ventilation strategy and air movement on the distribution of CO2 concentration in a room. The role of human exhalation and its interaction with the plume induced by the body's convective flow and room air movement due to different ventilation strategies were studied in a chamber at the University of Reading. These phenomena are considered to be important in understanding and predicting the flow patterns in a space and how these impact on the distribution of contaminants. This paper attempts to study the CO2 dispersion and distribution at the exhalation zone of two people sitting in a chamber as well as throughout the occupied zone of the chamber. The horizontal and vertical distributions of CO2 were sampled at locations with a probability that CO2 variation is considered high. Although the room size, source location, ventilation rate and location of air supply and extract devices all can have influence on the CO2 distribution, this article gives general guidelines on the optimum positioning of CO2 sensor in a room.
Resumo:
Much prior research on the structure and performance of UK real estate portfolios has relied on aggregated measures for sector and region. For these groupings to have validity, the performance of individual properties within each group should be similar. This paper analyses a sample of 1,200 properties using multiple discriminant analysis and cluster analysis techniques. It is shown that conventional property type and spatial classifications do not capture the variation in return behaviour at the individual building level. The major feature is heterogeneity - but there may be distinctions between growth and income properties and between single and multi-let properties that could help refine portfolio structures.
Resumo:
The paper analyses the emergence of group-specific attitudes and beliefs about tax compliance when individuals interact in a social network. It develops a model in which taxpayers possess a range of individual characteristics – including attitude to risk, potential for success in self-employment, and the weight attached to the social custom for honesty – and make an occupational choice based on these characteristics. Occupations differ in the possibility for evading tax. The social network determines which taxpayers are linked, and information about auditing and compliance is transmitted at meetings between linked taxpayers. Using agent-based simulations, the analysis demonstrates how attitudes and beliefs endogenously emerge that differ across sub-groups of the population. Compliance behaviour is different across occupational groups, and this is reinforced by the development of group-specific attitudes and beliefs. Taxpayers self-select into occupations according to the degree of risk aversion, the subjective probability of audit is sustained above the objective probability, and the weight attached to the social custom differs across occupations. These factors combine to lead to compliance levels that differ across occupations.
Resumo:
High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.