24 resultados para IN-OIL MICROEMULSIONS

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Headspace solid phase microextraction (HS-SPME) has been used to isolate the headspace volatiles formed during oxidation of oil-in-water emulsions. Qualitative and quantitative analyses with an internal standard were performed by GC-FID. Four sample temperatures for adsorption (30, 40, 50 and 60 C) and adsorption times in the range 10-25 min were tested to determine the conditions for the volatile concentration to reach equilibrium. The optimum conditions were at 50 C for 20 min. The method was applied to monitor changes in volatile composition during oxidation of an o/w emulsion. SPME was a simple, reproducible and sensitive method for the analysis of volatile oxidation products in oil-in-water emulsions. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model oil-in-water emulsions containing epicatechin (EC) and epigallocatechin gallate (EGCG) showed a synergistic increase in stability in emulsions containing added albumin. EGCG showed a stronger synergy (35%) with ovalbumin than did EC. Oxidation of the oil was monitored by determining peroxide values and hexanal contents. The effect of bovine serum albumin (BSA) on model oil-in-water emulsions containing each of the green tea catechins [epicatechin gallate (ECG), EGCG, EC and epigallocatechin (EGC)] was studied during storage at 30 degrees C. The green tea catechins showed moderate antioxidant activity in the emulsions with the order of activity being ECG approximate to EGCG > EC > EGC. Although BSA had very little antioxidant activity in the absence of phenolic antioxidants, the combination of BSA with each of the catechins showed strong antioxidant activity. BSA, in combination with EC, EGCG or EGC, showing the strongest antioxidant activity with good stability after 45 days storage. Model experiments with the catechins stored with BSA in aqueous solutions confirmed that protein-catechin adducts with antioxidant activity were formed between the catechins and protein. The antioxidant activity of the separated protein-catechin adducts increased strongly with storage time and was stronger for EGCG and ECG than for EC or EGC. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Oil palm is the world’s most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results: Here we present the first high-throughput screen to identify spontaneously-formed haploid (H) and doubled haploid (DH) palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences. Conclusions: This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antioxidant properties of caffeic acid and bovine serum albumin in oil-in-water and water-in-oil emulsions were studied. Caffeic acid (5 mmol/kg emulsion) showed good antioxidant properties in both 30% sunflower oil-in-water (OW) and 20% water-in-sunflower oil emulsions (WO), pH 5.4, during storage at 50 ºC. Although bovine serum albumin (BSA) (0.2%) had a slight antioxidant effect, the combination of caffeic acid and BSA showed a synergistic reduction in the rate of development of rancidity, with significant reductions in concentration of total volatiles, peroxide value (PV) and p-anisidine value (PA) for both emulsion types. The synergistic increase in stability of the OW and WO emulsions containing BSA and caffeic acid was 102.9 and 50.4 % respectively based on TOTOX values, which are calculated as 2PV + PA, with greater synergy calculated if based on formation of headspace volatiles, The OW emulsion was more susceptible to the development of headspace volatiles by oxidation than the WO emulsion, even though the degree of oxidation assessed by the TOTOX value was similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of atmospheric frying followed by drainage under vacuum on the stability of oil, compared to similar frying with drainage at atmospheric pressure. Changes in the oil were assessed by the free fatty acid (FFA) content, p-anisidine value (AnV), colour, viscosity, fatty acid profile and concentration of tocols. The rate of FFA formation in the case of vacuum drainage was found to be about half that of atmospheric drainage. Oil deterioration by oxidation and polymerisation was also reduced by the use of vacuum drainage. The AnV of the oil after vacuum drainage was lower by about 12%, the total colour difference was improved by 14% and viscosity was slightly reduced after 5 days of frying, compared to the values for oil that had been drained at atmospheric pressure. There was a reduction in the loss of polyunsaturated fatty acids in the case of vacuum drainage after 5 days of frying but differences in retention of tocols were only evident in the first two days of frying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid oxidation is the major form of deterioration in foods because it decreases food quality and nutritional value, and may have negative health implications. Selected aromatic plant extracts from leaves, flowers and stems of rosemary, thyme and lavender were investigated for their antioxidant activity. The total polyphenol content was determined by the Folin-Ciocalteu assay and the antioxidant capacity was determined by the Trolox equivalent antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl, oxygen radical absorbance capacity and ferric-reducing antioxidant power assays. For all four antioxidant assays, the extracts from thyme flowers, lavender leaves and thyme leaves had the highest antioxidant activity, followed by rosemary stems, rosemary leaves, and lavender stems, and the lavender flowers and thyme stems had the lowest antioxidant activity. The antioxidant activity was correlated with the polyphenol content, although minor deviations were observed. In oil-in-water emulsion, extracts from rosemary leaves and thyme leaves were most effective at retarding oxidation followed by the rosemary stems and thyme flowers. Extracts from thyme flowers and lavender leaves were less effective in the emulsion than predicted by the homogeneous antioxidant assays. This study demonstrated the potential use of plants extract as substitutes for synthetic antioxidants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4- dihydroxyphenylethanol- elenolic acid ( 1), and 3,4- dihydroxyphenyl-ethanolelenolic acid dialdehyde ( 2), in olive oil and oil- in- water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha- tocopherol; but in the presence of Cu( II), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil- in- water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl- 2- picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2- copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Study, volatile oxidation compounds formed in a commercial conjugated linoleic acid (CLA)-rich oil were quantified and results compared to those found in safflower oil (rich in linoleic acid, LA). Intact oil samples and pure triacylglycerols obtained following elimination of tocopherols and minor compounds were oxidised at 60 degrees C, and volatile oxidation compounds were analysed by solid phase microextraction-gas chromatography with flame ionisation detector and mass spectrometer. Results showed that while, as expected, hexanal was the major volatile oxidation compound found in oil and triacylglycerols rich in LA, both hexanal and heptanal equally were the most abundant compounds in oil and triacylglycerols rich in CLA. Besides, samples rich in CLA also showed significantly high quantities of trans-2-octenal and trans-2-nonenal and the latter, along with heptanal, were absent in samples rich in LA. Results for CLA samples were not easy to interpret since major volatiles found are not expected from theoretically stable hydroperoxides formed in CLA and could in part derive from dioxetanes coming from 1,2-cycloadclitions of CIA with oxygen. Overall, results obtained support evidence that oxidation mechanisms of CLA may differ than those of LA. Also, it was concluded that heptanal determination could serve as a useful marker of oxidation progress in CLA-rich oils. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carotenoids are a class of natural pigments familiar to all through the orange-red to yellow colors of many fruits, vegetables, and flowers, as well as for the provitamin A activity that some of them possess. A body of scientific evidence suggests that carotenoids may scavenge and deactivate free radicals, acting thereby as antioxidants both in food systems (in vitro) and in the human organism (in vivo). Overall, epidemiological evidence links higher carotenoid intakes and tissue concentrations with reduced cancer and cardiovascular disease risk. However, research has also shown that the antioxidant activity of carotenoids may shift to a prooxidant character depending mainly on the biological environment in which they act. A summary of the antioxidant potential of natural carotenoids both in oil model systems and in vivo is presented in this article.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mathematical models that describe the immersion-frying period and the post-frying cooling period of an infinite slab or an infinite cylinder were solved and tested. Results were successfully compared with those found in the literature or obtained experimentally, and were discussed in terms of the hypotheses and simplifications made. The models were used as the basis of a sensitivity analysis. Simulations showed that a decrease in slab thickness and core heat capacity resulted in faster crust development. On the other hand, an increase in oil temperature and boiling heat transfer coefficient between the oil and the surface of the food accelerated crust formation. The model for oil absorption during cooling was analysed using the tested post-frying cooling equation to determine the moment in which a positive pressure driving force, allowing oil suction within the pore, originated. It was found that as crust layer thickness, pore radius and ambient temperature decreased so did the time needed to start the absorption. On the other hand, as the effective convective heat transfer coefficient between the air and the surface of the slab increased the required cooling time decreased. In addition, it was found that the time needed to allow oil absorption during cooling was extremely sensitive to pore radius, indicating the importance of an accurate pore size determination in future studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foods are complex biological materials, and the lipids within the food are susceptible to lipid oxidation, which is retarded by antioxidants. The precise structure and composition of the food may affect the antioxidant activity quite strongly in some cases. Solubility of the antioxidant in the phases present is one of the main parameters that affects the variation in antioxidant activity with phase composition of food. Polar antioxidants are more effective in oils, whereas non-polar antioxidants are more effective in oil-in-water emulsions. Antioxidant activity has been reported in a range of different media, including oils, emulsions, liposomes, microemulsions, fish and meat muscles, and the antioxidant activity may vary from one medium to another. Synergy between antioxidants may also vary from one medium to another. Interactions with metals and with proteins affect antioxidant activity and these interactions are also dependent on the phases present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Purpose: The pH discrepancy between healthy and atopic dermatitis skin was identified as a site specific trigger for delivering hydrocortisone from microcapsules. Methods: Using Eudragit L100, a pH-responsive polymer which dissolves at pH 6, hydrocortisone-loaded microparticles were produced by oil-in-oil microencapsulation or spray drying. Release and permeation of hydrocortisone from microparticles alone or in gels was assessed and preliminary stability data was determined. Results: Drug release from microparticles was pH-dependent though the particles produced by spray drying also gave significant non-pH dependent burst release, resulting from their porous nature or from drug enrichment on the surface of these particles. This pH-responsive release was maintained upon incorporation of the oil-in-oil microparticles into Carbopol- and HPMC-based gel formulations. In-vitro studies showed 4 to 5-fold higher drug permeation through porcine skin from the gels at pH 7 compared to pH 5. Conclusions: Permeation studies showed that the oil-in-oil generated particles deliver essentially no drug at normal (intact) skin pH (5.0 – 5.5) but that delivery can be triggered and targeted to atopic dermatitis skin where the pH is elevated. The incorporation of these microparticles into Carbopol- and HPMC-based aqueous gel formulations demonstrated good stability and pH-responsive permeation into porcine skin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phenolic fractions released during hydrothermal treatment of selected feedstocks (corn cobs, eucalypt wood chips, almond shells, chestnut burs, and white grape pomace) were selectively recovered by extraction with ethyl acetate and washed with ethanol/water solutions. The crude extracts were purified by a relatively simple adsorption technique using a commercial polymeric, nonionic resin. Utilization of 96% ethanol as eluting agent resulted in 47.0-72.6% phenolic desorption, yielding refined products containing 49-60% w/w phenolics (corresponding to 30-58% enrichment with respect to the crude extracts). The refined extracts produced from grape pomace and from chestnut burs were suitable for protecting bulk oil and oil-in-water and water-in-oil emulsions. A synergistic action with bovine serum albumin in the emulsions was observed.