6 resultados para IN VITRO CYTOTOXICITY
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: Dietary fibres have been associated with decreased risk of various cancers, although the mechanisms are unclear. Induction of apoptosis in tumour cells is thought to be an important protective mechanism against colorectal cancer. This work investigates the effects of pectins and pecticoligosaccharides (POS) on the human colonic adenocarcinoma cell line HT29. Materials and Methods: The anti-proliferative effects of pectin and POS were studied by testing the HT29 cells for cytotoxicity, differentiation and/or apoptosis by lactate dehydrogenase, alkaline phosphatase and caspase-3 activity assays. DNA agarose gel electrophoresis was also carried out. Results: A significant reduction in attached cell numbers was observed after three days incubation. This decrease was neither due to cells undergoing necrosis nor differentiation. Increased apoptosis frequency, after incubation with 1% (w/v) pectin andlor POS, was demonstrated by caspase-3 activity and DNA laddering on agarose gel electrophoresis. Conclusion: Dietary pectins and their degradation products may contribute to the reported protective effects of fruits against colon cancer.
Resumo:
Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 mu g/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade. (c) 2007 Wiley-Liss, Inc.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
Recently we have described an HPMA copolymer conjugate carrying both the aromatase inhibitor aminoglutethimide (AGM) and doxorubicin (Dox) as combination therapy. This showed markedly enhanced in vitro cytotoxicity compared to the HPMA copolymer-Dox (FCE28068), a conjugate that demonstrated activity in chemotherapy refractory breast cancer patients during early clinical trials. To better understand the superior activity of HPMA copolymer-Dox-AGM, here experiments were undertaken using MCF-7 and MCF-7ca (aromatase-transfected) breast cancer cell lines to: further probe the synergistic cytotoxic effects of AGM and Dox in free and conjugated form; to compare the endocytic properties of HPMA copolymer-Dox-AGM and HPMA copolymer-Dox (binding, rate and mechanism of cellular uptake); the rate of drug liberation by lysosomal thiol-dependant proteases (i.e. conjugate activation), and also, using immunocytochemistry, to compare their molecular mechanism of action. It was clearly shown that attachment of both drugs to the same polymer backbone was a requirement for enhanced cytotoxicity. FACS studies indicated both conjugates have a similar pattern of cell binding and endocytic uptake (at least partially via a cholesterol-dependent pathway), however, the pattern of enzyme-mediated drug liberation was distinctly different. Dox release from PK1 was linear with time, whereas the release of both Dox and AGM from HPMA copolymer-Dox-AGM was not, and the initial rate of AGM release was much faster than that seen for the anthracycline. Immunocytochemistry showed that both conjugates decreased the expression of ki67. However, this effect was more marked for HPMA copolymer-Dox-AGM and, moreover, only this conjugate decreased the expression of the anti-apoptotic protein bcl-2. In conclusion, the superior in vitro activity of HPMA copolymer-Dox-AGM cannot be attributed to differences in endocytic uptake, and it seems likely that the synergistic effect of Dox and AGM is due to the kinetics of intracellular drug liberation which leads to enhanced activity. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Rifaximin, a rifamycin derivative, has been reported to induce clinical remission of active Crohn's disease (CD), a chronic inflammatory bowel disorder. In order to understand how rifaximin affects the colonic microbiota and its metabolism, an in vitro human colonic model system was used in this study. We investigated the impact of the administration of 1800 mg/day of rifaximin on the faecal microbiota of four patients affected by colonic active CD [Crohn's disease activity index (CDAI > 200)] using a continuous culture colonic model system. We studied the effect of rifaximin on the human gut microbiota using fluorescence in situ hybridization, quantitative PCR and PCR–denaturing gradient gel electrophoresis. Furthermore, we investigated the effect of the antibiotic on microbial metabolic profiles, using 1H-NMR and solid phase microextraction coupled with gas chromatography/mass spectrometry, and its potential genotoxicity and cytotoxicity, using Comet and growth curve assays. Rifaximin did not affect the overall composition of the gut microbiota, whereas it caused an increase in concentration of Bifidobacterium, Atopobium and Faecalibacterium prausnitzii. A shift in microbial metabolism was observed, as shown by increases in short-chain fatty acids, propanol, decanol, nonanone and aromatic organic compounds, and decreases in ethanol, methanol and glutamate. No genotoxicity or cytotoxicity was attributed to rifaximin, and conversely rifaximin was shown to have a chemopreventive role by protecting against hydrogen peroxide-induced DNA damage. We demonstrated that rifaximin, while not altering the overall structure of the human colonic microbiota, increased bifidobacteria and led to variation of metabolic profiles associated with potential beneficial effects on the host.