5 resultados para Hypertension
em CentAUR: Central Archive University of Reading - UK
Resumo:
BACKGROUND: Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
Resumo:
Background: Although a large number of randomized controlled trials (RCTs) have examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d,which are unlikely to be achieved by diet manipulation. Objective: The objective was to examine, using a retrospective analysis from a multi-center RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and diastolic blood pressure and microvascular function in UK adults. Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler Iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 variant. Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically in those with isolated systolic hypertension (n=31). No dose response was observed. Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure reductions which, at a population level, would be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT where participants are prospectively recruited on the basis of blood pressure status is required to draw definite conclusions. The Journal of Nutrition NUTRITION/2015/220475 Version 4
Resumo:
Background Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. Methods and Results In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. Conclusions Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH.