141 resultados para Hydroxycinnamic acids
em CentAUR: Central Archive University of Reading - UK
Resumo:
The effect of a commercial cellulase preparation on phenol liberation and extraction from black currant pomace was studied. The enzyme used, which was from Trichoderma spp., was an effective "cellulase-hemicellulase" blend with low P-glucosidase activity and various side activities. Enzyme treatment significantly increased plant cell wall polysaccharide degradation as well as increasing the availability of phenols for subsequent methanolic extraction. The release of anthocyanins and other phenols was dependent on reaction parameters, including enzyme dosage, temperature, and time. At 50 degrees C, anthocyanin yields following extraction increased by 44% after 3 h and by 60% after 1.5 h for the lower and higher enzyme/substrate ratio (E/S), respectively. Phenolic acids were more easily released in the hydrolytic mixture (supernatant) and, although a short hydrolysis time was adequate to release hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCA) required longer times. The highest E/S value of 0.16 gave a significant increase of flavonol yields in all samples. The antioxidant capacity of extracts, assessed by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, the oxygen radical absorbance capacity, and the ferric reducing antioxidant potential depended on the concentration and composition of the phenols present.
Resumo:
Date palm (Pheonix dactylifera) fruit contains an array of polyphenols, although how these levels alter with cultivar type and fruit ripening is unclear. Utilizing HPLC and LC-ESI-MS/MS, this study define and quantify an array of hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids in three common cultivars of dates (Ajwa, Barni, and Khalas) at the main ripening stages (kimri, khalal, rutab, and tamr). Polyphenols were at highest concentration at earlier stages of ripening, with concentrations reducing with ripening. The khalal stage of the Ajwa cultivar contained significantly higher (P < 0.001) levels of polyphenols than measured in the Barni and Khalas dates at the same degree of ripening. Furthermore, the Ajwa cultivar was the only one to contain significant quantities of anthocyanidins, in particular at the khalal stage. These data suggest dates are a significant source of polyphenols, especially if the earlier edible ripening stages are consumed or utilized as food ingredients.
Resumo:
A highly stereoselective synthesis of conformationally constrained cyclic γ-amino acids has been devised. The key step involves an intramolecular cyclization of a nitronate onto a conjugated ester, promoted by a bifunctional thiourea catalyst. This methodology has been successfully applied to generate a variety of γ-amino acids, including some containing three contiguous stereocenters, with very high diastereoselectivity and excellent enantioselectivity. It is postulated that an interaction that is key to the success of the process is the simultaneous coordination of the thiourea functionality to both the conjugated ester and the nitronate. Finally, the synthetic utility of these compounds is demonstrated in the synthesis of two dipeptides derived from the C- and N-termini.
Resumo:
There is currently considerable interest in potential atherogenic and thrombogenic consequences of elevated concentrations of triacylglycerols, especially in the post-prandial state. Despite this, there is limited information on the effects of dietary fatty acids on the synthesis, secretion and metabolism of chylomicrons, the large triacylglycerol-rich lipoproteins synthesized in the enterocyte following the digestion and absorption of dietary fat. This brief review considers current approaches to the investigation of chylomicron synthesis and summarizes some of the human, cell and animal studies that have investigated effects of different fatty acids on these pathways. Potential sites for modulatory effects of dietary fatty acids on the molecular events of chylomicron synthesis are proposed in the light of the recent model that has been developed from cell and animal studies and observations based on abnormalities in chylomicron formation in human inherited autosomal recessive diseases.
Resumo:
Long-chain n-3 polyunsaturated fatty acids are found in oily fish and in fish oils and similar preparations. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, oily fish and long-chain n-3 fatty acids reduces risk of cardiovascular mortality. Secondary prevention studies using long-chain n-3 fatty acids in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality with an especially potent effect on sudden death. Long-chain n-3 fatty acids have been shown to beneficially modify a range of cardiovascular risk factors, which may result in primary cardiovascular prevention. However, reduced non-fatal and fatal events and a reduction in sudden death probably involve other mechanisms. Reduced thrombosis following long-chain n-3 fatty acids may play a role. A decrease in arrhythmias is a favoured mechanism of action of long-chain n-3 fatty acids and is supported by cell culture and animal studies. However human trials using implantable cardiac defibrillators have produced inconsistent findings and a recent meta-analysis does not support this mechanism of action. An alternative mechanism of action may be stabilisation of atherosclerotic plaques by long-chain n-3 fatty acids. This is suggested by one published human study which showed that incorporation of long-chain n-3 fatty acids into plaques collected at carotid endarterectomy resulted in fewer macrophages in the plaque and a morphology indicative of increased stability. These findings are supported from observations in an animal model and suggest that the primary effect of long-chain n-3 fatty acids might be on macrophages within the plaque.
Resumo:
The present study investigated whether consuming dairy products naturally enriched in cis-9, trans-11 (c9,t11) conjugated linoleic acid (CLA) by modification of cattle feed increases the concentration of this isomer in plasma and cellular lipids in healthy men. The study had a double-blind cross-over design. Subjects aged 34-60 years consumed dairy products available from food retailers for 1 week and then either control (0.17 g c9,t11 CLA/d; 0.31 g trans-vaccenic acid (tVA)/d) or CLA-enriched (1.43 g c9,t11 CLA/d; 4.71 g tVA/d) dairy products for 6 weeks. After 7 weeks washout, this was repeated with the alternate products. c9,t11 CLA concentration in plasma lipids was lower after consuming the control products, which may reflect the two-fold greater c9,t11 CLA content of the commercial products. Consuming the CLA-enriched dairy products increased the c9,t11 CLA concentration in plasma phosphatidylcholine (PC) (38 %; P=0.035), triacylglycerol (TAG) (22 %; P < 0.0001) and cholesteryl esters (205 %; P < 0.0001), and in peripheral blood mononuclear cells (PBMC) (238 %; P < 0.0001), while tVA concentration was greater in plasma PC (65 %; P=0.035), TAG (98 %; P=0.001) and PBMC (84 %; P=0.004). Overall, the present study shows that consumption of naturally enriched dairy products in amounts similar to habitual intakes of these foods increased the c9,t11 CLA content of plasma and cellular lipids.
Resumo:
The very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are widely recognised to have beneficial effects on human health. However, recommended intakes of VLC n-3 PUFA (450 mg/day) are not being met by the diet in the majority of the population mainly because of low consumption of oil-rich fish. Current mean intake of VLC n-3 PUFA by adults is estimated to be about 282 mg/day with EPA and DHA contributing about 244 mg/day. Furthermore, the fact that only about 27% of adults eat any oil-rich fish (excluding canned tuna) and knowledge of the poor conversion of α-linolenic acid to EPA and DHA in vivo, particularly in men, leads to the need to review current dietary sources of these fatty acids. Animal-derived foods are likely to have an important function in increasing intake and studies have shown that feeding fish oils to animals can increase the EPA and DHA content of the resulting food products. This paper highlights the importance of examining current and projected consumption trends of meat and other animal products when exploring the potential impact of enriched foods by means of altering animal diets. When related to current food consumption data, potential dietary intakes of EPA+DHA from foods derived from animals fed enriched diets are calculated to be about 231 mg/day. If widely consumed, such foods could have a significant impact on progression of conditions such as cardiovascular disease. Consideration is also given to the sources of VLC n-3 PUFA in animal diets, with the sustainability of fish oil being questioned and the need to investigate the use of alternative dietary sources such as those of algal origin.
Resumo:
It is considered that consumption of very long chain (VLC, carbon chain length >= 20) n - 3 PUFAs in most Western populations is sub-optimal and benefits in relation to chronic disease would be gained from increased consumption. This review examines the current contribution that meat makes to dietary intake of VLC n - 3 PUFA and given its current low contribution, how ruminant meat may be enriched. Enrichment both directly with VLC n - 3 fatty acids and indirectly by increasing intake by the animals of alpha-linolenic acid (ALNA; C 18:3 n - 3) are considered. Since it now appears that dietary ALNA is a very limited source of VLC n - 3 PUFA in humans, the indirect route is controversial but since some forages-are rich sources of ALNA this route has many sustainability and environmental attractions. Consideration is also given to the increased concentrations of trans and conjugated fatty acids that will arise from enriching ruminant meat with PUFA.
Resumo:
It is considered that consumption of very long chain (VLC, carbon chain length >= 20) n - 3 PUFAs in most Western populations is sub-optimal and benefits in relation to chronic disease would be gained from increased consumption. This review examines the current contribution that meat makes to dietary intake of VLC n - 3 PUFA and given its current low contribution, how ruminant meat may be enriched. Enrichment both directly with VLC n - 3 fatty acids and indirectly by increasing intake by the animals of alpha-linolenic acid (ALNA; C 18:3 n - 3) are considered. Since it now appears that dietary ALNA is a very limited source of VLC n - 3 PUFA in humans, the indirect route is controversial but since some forages-are rich sources of ALNA this route has many sustainability and environmental attractions. Consideration is also given to the increased concentrations of trans and conjugated fatty acids that will arise from enriching ruminant meat with PUFA.
Resumo:
Previous experiments from our group have demonstrated that abomasal infusion of unsaturated free fatty acids (FFA) markedly decreases dry matter intake (DMI) in dairy cows. In contrast, experiments from other groups have noted smaller decreases in DMI when unsaturated triglycerides (TG) were infused postruminally. Our hypothesis was that unsaturated FFA would be more potent inhibitors of DMI than an equivalent amount of unsaturated TG. Four Holstein cows in late lactation were used in a single reversal design. Cows were fed a total mixed ration containing (DM basis) 23% alfalfa silage, 23% corn silage, 40.3% ground shelled corn, and 10.5% soybean meal. Two cows received soy FFA (UFA; 0, 200, 400, 600 g/d) and 2 received soy oil (TG) in the same amounts; cows then were switched to the other lipid source. Cows were abomasally infused with each amount for 5-d periods. The daily amount of lipid was pulse-dosed in 4 equal portions at 0600, 1000, 1700, and 2200 h; no emulsifiers were used and there was no sign of digestive disturbance. Both lipid sources linearly decreased DMI, with a significant interaction between lipid source and amount. Slope-ratio analysis indicated that UFA were about 2 times more potent in decreasing DMI than were TG. Decreased DMI led to decreased milk production. Milk fat content was increased linearly by lipid infusion. Milk fat yield decreased markedly for UFA infusion but was relatively unaffected by infusion of TG. Contents of short- and medium-chain fatty acids in milk fat decreased as the amount of either infusate increased. Contents of C-18:2 and C18: 3 in milk fat were increased linearly by abomasal infusion of either fat source; cis-9 C-18:1 was unaffected. Transfer of infused C18: 2 to milk fat was 35.6, 42.5, and 27.8% for 200, 400, and 600 g/d of UFA, and 34.3, 39.6, and 34.0% for respective amounts of TG. Glucagon-like peptide-1 (7-36) amide (GLP-1) concentration in plasma significantly increased as DMI decreased with increasing infusion amount of UFA or TG. Plasma concentration of cholecystokinin-octapeptide (CCK-8) was unaffected by lipid infusion. These results indicate that unsaturated FFA reaching the duodenum are more potent inhibitors of DMI than are unsaturated TG; the effect may be at least partially mediated by GLP-1.
Resumo:
The effect of poultry species (broiler or turkey) and genotype (Wrolstad or BUT T8 turkeys and Ross 308 or Cobb 500 broilers) on the efficiency with which dietary longchain n-3 PUFA were incorporated into poultry meat was determined. Broilers and turkeys of both genotypes were fed one of six diets varying in FA composition (two replicates per genotype x diet interaction). Diets contained 50 g/kg added oil, which was either blended vegetable oil (control), or partially replaced with linseed oil (20 or 40 g/kg diet), fish oil (20 or 40 g/kg diet), or a mixture of the two (20 g linseed oil and 20 g fish oil/kg diet). Feeds and samples of skinless breast and thigh meat were analyzed for FA. Wrolstad dark meat was slightly more responsive than BUT T8 (P = 0.046) to increased dietary 18:3 concentrations (slopes of 0.570 and 0.465, respectively). The Ross 308 was also slightly more responsive than the Cobb 500 (P= 0.002) in this parameter (slopes of 0.557 and 0.449). There were no other significant differences between the genotypes. There was some evidence (based on the estimates of the slopes and their associated standard errors) that white turkey meat was more responsive than white chicken meat to 20:5 (slopes of 0.504 and 0.289 for turkeys and broilers, respectively). There was no relationship between dietary 18:3 n-3 content and meat 20:5 and 22:6 contents. If birds do convert 18:3 to higher FA, these acids are not then deposited in the edible tissues.