25 resultados para Hydrogeology -- Catalonia -- Cinc Claus
em CentAUR: Central Archive University of Reading - UK
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
Fine-grained sediments on land, or in a freshwater or marine environment, may become contaminated with a wide range of pollutants including hydrocarbons. This paper is concerned with preliminary studies of the mobilization and transportation of hydrocarbons, during the process of consolidation, to adjacent sediments or water bodies. A modified Rowe Cell was used to measure the consolidation properties of prepared kaolinite and bentonite clay-water slurries, with and without the addition of oil, along with hydrocarbon-bearing drill-cuttings samples taken from the sea-bed adjacent to two North Sea oil-well platforms. The consolidation properties of the kaolinite and bentonite clay slurries were little altered by the addition of oil, which was present at concentrations of between 8073 and 59 572 mg kg(-1). During each consolidation stage, samples of the expelled pore-fluids were collected and analysed for oil content. These values were very low in comparison with the original oil concentration in the samples and changed little between each consolidation stage. Analysis of the slurry samples both before and after consolidation confirms that, proportionally, little oil is removed as a result of consolidation. The implication of these results is that, for the range of samples tested, the very high hydraulic gradients and particle rearrangements that occur during the process of consolidation are capable of releasing only proportionally small amounts of oil bound to the fine-grained clay and silt particles.
Resumo:
John Snow was a physician but his studies of the way in which cholera is spread have long attracted the interest of hydrogeologists. From his investigation into the epidemiology of the cholera outbreak around the well in Broad Street, London, in 1854, Snow gained valuable evidence that cholera is spread by contamination of drinking water. Subsequent research by others showed that the well was contaminated by sewage. The study therefore represents one of the first, if not the first, study of an incident of groundwater contamination in Britain. Although he had no formal geological training, it is clear that Snow had a much better understanding of groundwater than many modern medical practitioners. At the time of the outbreak Snow was continuing his practice as a physician and anaesthetist. His casebooks for 1854 do not even mention cholera. Yet, nearly 150 years later, he is as well known for his work on cholera as for his pioneering work on anaesthesia, and his discoveries are still the subject of controversy.
Resumo:
Fine-grained sediments on land, or in a freshwater or marine environment, may become contaminated with a wide range of pollutants including hydrocarbons. This paper is concerned with preliminary studies of the mobilization and transportation of hydrocarbons, during the process of consolidation, to adjacent sediments or water bodies. A modified Rowe Cell was used to measure the consolidation properties of prepared kaolinite and bentonite clay-water slurries, with and without the addition of oil, along with hydrocarbon-bearing drill-cuttings samples taken from the sea-bed adjacent to two North Sea oil-well platforms. The consolidation properties of the kaolinite and bentonite clay slurries were little altered by the addition of oil, which was present at concentrations of between 8073 and 59 572 mg kg(-1). During each consolidation stage, samples of the expelled pore-fluids were collected and analysed for oil content. These values were very low in comparison with the original oil concentration in the samples and changed little between each consolidation stage. Analysis of the slurry samples both before and after consolidation confirms that, proportionally, little oil is removed as a result of consolidation. The implication of these results is that, for the range of samples tested, the very high hydraulic gradients and particle rearrangements that occur during the process of consolidation are capable of releasing only proportionally small amounts of oil bound to the fine-grained clay and silt particles.
Resumo:
We have previously placed the solar contribution to recent global warming in context using observations and without recourse to climate models. It was shown that all solar forcings of climate have declined since 1987. The present paper extends that analysis to include the effects of the various time constants with which the Earth’s climate system might react to solar forcing. The solar input waveform over the past 100 years is defined using observed and inferred galactic cosmic ray fluxes, valid for either a direct effect of cosmic rays on climate or an effect via their known correlation with total solar irradiance (TSI), or for a combination of the two. The implications, and the relative merits, of the various TSI composite data series are discussed and independent tests reveal that the PMOD composite used in our previous paper is the most realistic. Use of the ACRIM composite, which shows a rise in TSI over recent decades, is shown to be inconsistent with most published evidence for solar influences on pre-industrial climate. The conclusions of our previous paper, that solar forcing has declined over the past 20 years while surface air temperatures have continued to rise, are shown to apply for the full range of potential time constants for the climate response to the variations in the solar forcings.
Resumo:
There is growing interest in the use of inulins as substrates for the selective growth of beneficial gut bacteria such as bifidobacteria and lactobacilli because recent studies have established that their prebiotic effect is linked to several health benefits. In the present study, the impact of a very-long-chain inulin (VLCI), derived from globe artichoke (Cynara scolymus), on the human intestinal microbiota compared with maltodextrin was determined. A double-blind, cross-over study was carried out in thirty-two healthy adults who were randomised into two groups and consumed 10 g/d of either VLCI or maltodextrin, for two 3-week study periods, separated by a 3-week washout period. Numbers of faecal bifidobacteria and lactobacilli were significantly higher upon VLCI ingestion compared with the placebo. Additionally, levels of Atopobium group significantly increased, while Bacteroides–Prevotella numbers were significantly reduced. No significant changes in faecal SCFA concentrations were observed. There were no adverse gastrointestinal symptoms apart from a significant increase in mild and moderate bloating upon VLCI ingestion. These observations were also confirmed by in vitro gas production measurements. In conclusion, daily consumption of VLCI extracted from globe artichoke exerted a pronounced prebiotic effect on the human faecal microbiota composition and was well tolerated by all volunteers.
Resumo:
A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.
Resumo:
A two by two experimental study has been designed to determine the effect of gut microbiota on energy metabolism in mouse models. The metabolic phenotype of germ-free (GF, n = 20) and conventional (n = 20) mice was characterized using a NMR spectroscopy-based metabolic profiling approach, with a focus on sexual dimorphism (20 males, 20 females) and energy metabolism in urine, plasma, liver, and brown adipose tissue (BAT). Physiological data of age-matched GF and conventional mice showed that male animals had a higher weight than females in both groups. In addition, conventional males had a significantly higher total body fat content (TBFC) compared to conventional females, whereas this sexual dimorphism disappeared in GF animals (i.e., male GF mice had a TBFC similar to those of conventional and GF females). Profiling of BAT hydrophilic extracts revealed that sexual dimorphism in normal mice was absent in GF animals, which also displayed lower BAT lactate levels and higher levels of (D)-3-hydroxybutyrate in liver, plasma, and BAT, together with lower circulating levels of VLDL. These data indicate that the gut microbiota modulate the lipid metabolism in BAT, as the absence of gut microbiota stimulated both hepatic and BAT lipolysis while inhibiting lipogenesis. We also demonstrated that (1)H NMR metabolic profiles of BAT were excellent predictors of BW and TBFC, indicating the potential of BAT to fight against obesity.
Resumo:
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP.
Resumo:
The pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes. The metabolites observed in each of these biological compartments were found to be qualitatively comparable to the metabolic signature of the same biological matrices in humans and rodents. The data were modelled using a combination of principal components analysis and Venn diagram mapping. Urine represented the most metabolically distinct biological compartment studied, with a relatively greater number of NMR detectable metabolites present, many of which are implicated in gut-microbial co-metabolic processes. The major inter-species differences observed were in the phase II conjugation of extra-genomic metabolites; the pig was observed to conjugate p-cresol, a gut microbial metabolite of tyrosine, with glucuronide rather than sulfate as seen in man. These observations are important to note when considering the translatability of experimental data derived from porcine models.
Resumo:
The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.
Resumo:
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.
Resumo:
The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.