68 resultados para Hybrid Recommendation
em CentAUR: Central Archive University of Reading - UK
Resumo:
The research presented in this article centres on an under-researched demographic group of young return migrants, namely, second-generation Barbadians, or 'Bajan-Brits', who have decided to 'return' to the birthplace of their parents. Based on 51 in-depth interviews, the essay examines the experiences of second-generation return migrants from an interpretative perspective framed within post-colonial discourse. The article first considers the Bajan-Brits and issues of race in the UK before their decision to migrate. It is then demonstrated that on 'return', in certain respects, these young, black English migrants occupy a liminal position of cultural, racial and economic privilege, based on their 'symbolic' or 'token' whiteness within the post-colonial context of Barbados. But this very hybridity and inbetweeness means that they also face difficulties and associated feelings of social alienation and discrimination. The ambivalent status of this transnational group of migrants serves to challenge traditional notions of Barbadian racial identity.
Resumo:
Across Europe, elevated phosphorus (P) concentrations in lowland rivers have made them particularly susceptible to eutrophication. This is compounded in southern and central UK by increasing pressures on water resources, which may be further enhanced by the potential effects of climate change. The EU Water Framework Directive requires an integrated approach to water resources management at the catchment scale and highlights the need for modelling tools that can distinguish relative contributions from multiple nutrient sources and are consistent with the information content of the available data. Two such models are introduced and evaluated within a stochastic framework using daily flow and total phosphorus concentrations recorded in a clay catchment typical of many areas of the lowland UK. Both models disaggregate empirical annual load estimates, derived from land use data, as a function of surface/near surface runoff, generated using a simple conceptual rainfall-runoff model. Estimates of the daily load from agricultural land, together with those from baseflow and point sources, feed into an in-stream routing algorithm. The first model assumes constant concentrations in runoff via surface/near surface pathways and incorporates an additional P store in the river-bed sediments, depleted above a critical discharge, to explicitly simulate resuspension. The second model, which is simpler, simulates P concentrations as a function of surface/near surface runoff, thus emphasising the influence of non-point source loads during flow peaks and mixing of baseflow and point sources during low flows. The temporal consistency of parameter estimates and thus the suitability of each approach is assessed dynamically following a new approach based on Monte-Carlo analysis. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.
Resumo:
The International System of Units (SI) is founded on seven base units, the metre, kilogram, second, ampere, kelvin, mole and candela corresponding to the seven base quantities of length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity. At its 94th meeting in October 2005, the International Committee for Weights and Measures (CIPM) adopted a recommendation on preparative steps towards redefining the kilogram, ampere, kelvin and mole so that these units are linked to exactly known values of fundamental constants. We propose here that these four base units should be given new definitions linking them to exactly defined values of the Planck constant h, elementary charge e, Boltzmann constant k and Avogadro constant NA, respectively. This would mean that six of the seven base units of the SI would be defined in terms of true invariants of nature. In addition, not only would these four fundamental constants have exactly defined values but also the uncertainties of many of the other fundamental constants of physics would be either eliminated or appreciably reduced. In this paper we present the background and discuss the merits of these proposed changes, and we also present possible wordings for the four new definitions. We also suggest a novel way to define the entire SI explicitly using such definitions without making any distinction between base units and derived units. We list a number of key points that should be addressed when the new definitions are adopted by the General Conference on Weights and Measures (CGPM), possibly by the 24th CGPM in 2011, and we discuss the implications of these changes for other aspects of metrology.
Resumo:
Field experiments were carried out to assess the effects of nitrogen fertilization and seed rate on the Hagberg falling number (HFN) of commercial wheat hybrids and their parents. Applying nitrogen (200 kg N ha(-1)) increased HFN in two successive years. The HFN of the hybrid Hyno Esta was lower than either of its parents (Estica and Audace), particularly when nitrogen was not applied. Treatment effects on HFN were negatively associated with a-amylase activity. Phadebas grain blotting suggested two populations of grains with different types of a-amylase activity: Estica appeared to have a high proportion of grains with low levels of late maturity endosperm a-amylase activity (LMEA); Audace had a few grains showing high levels of germination amylase; and the hybrid, Hyno Esta, combined the sources from both parents to show heterosis for a-amylase activity. Applying nitrogen reduced both apparent LMEA and germination amylase. The effects on LMEA were associated with the size and disruption of the grain cavity, which was greater in Hyno Esta and Estica and in zero-nitrogen treatments. External grain morphology failed to explain much of the variation in LMEA and cavity size, but there was a close negative correlation between cavity size and protein content. Applying nitrogen increased post-harvest dormancy of the grain. Dormancy was greatest in Estica and least in Audace. It is proposed that effects of seed rate, genotype and nitrogen fertilizer on HFN are mediated through factors affecting the size and disruption of the grain cavity and therefore LMEA, and through factors affecting dormancy and therefore germination amylase. (c) 2004 Society of Chemical Industry.
Resumo:
An experiment was designed to test the response of growing pullets to two changes in photoperiod (an increase from 8 to 14 h followed 5 weeks later by the reverse change, or a decrease from 14 to 8 h followed by an increase). The first change was made either at 35 days or at 56 days of age, to test the influence of age on the responses observed. Control groups were kept oil constant 8-h and constant 14-h photoperiods and the responses to appropriate single changes were also tested. Mean age at first egg varied from 111 days for birds given a single increment at 56 days to 166 days for pullets given an increase in photoperiod at 35 days followed by a reduction at 70 days. Responses to the single changes confirmed earlier reports that sensitivity to change in photoperiod varies with age ill a manner that is quantitatively predictable. Responses to the double changes could be explained by Postulating that the initial change altered the 'physiological age' of the bird to all extent that was also quantitatively predictable. An early increase in photoperiod advances sexual development and makes the bird more sensitive to a subsequent decrease than would be expected by reference to its chronological age. An early decrease in photoperiod delays sexual development, which can have the effect of making the bird more or less sensitive to a subsequent increase since, ill layer-strain pullets, sensitivity to an increment in photoperiod normally increases Lip to about 9 weeks of age but decreases thereafter. Mean age at first egg predicted using these concepts was very highly correlated with observed age at first egg. The results provide a rational basis for constructing a model to predict age at first egg for any combination of increases and decreases in photoperiod applied to growing pullets.
Resumo:
Botrytis cinerea occurred commonly on cultivated Primula ×polyantha seed. The fungus was mostly on the outside of the seed but sometimes was present within the seed. The fungus frequently caused disease at maturity in plants grown from the seed, demonstrated by growing plants in a filtered airflow, isolated from other possible sources of infection. Young, commercially produced P. ×polyantha plants frequently had symptomless B. cinerea infections spread throughout the plants for up to 3 months, with symptoms appearing only at flowering. Single genetic individuals of B. cinerea, as determined by DNA fingerprinting, often were dispersed widely throughout an apparently healthy plant. Plants could, however, contain more than one isolate.
Resumo:
The title compound, [Al(HPO4)(H2PO4)(C10H8N2)]n, consists of AlO4N2 octahedra vertex-linked to H2PO4 and HPO4 tetrahedra to form layers based on a (4,12)- net. The layers stack in an AAA fashion, held in place by pi-pi interactions between 2,2 '-bipyridine molecules coordinated to Al atoms in adjacent layers.
Resumo:
The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic β-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di-and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a β-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide β-strands into helical tapes, which then stack into fibrils.