5 resultados para Hybanthus communis
em CentAUR: Central Archive University of Reading - UK
Resumo:
Two field trials were conducted using established apple (Malus cv. Golden Delicious) and pear (Pyrus communis 'Williams' Bon Chretien') to assess the efficacy of three commercially available systemic inducing resistance (SIR) products, Messenger (a.i. Harpin protein), Phoenix (a.i. Potassium phosphite) and Rigel (a.i. Salicylic acid derivative) applied at four different growth stages of tree development (bud break, green cluster, 90% petal fall, early fruitlet) against the foliar pathogens Venturia inaequalis and Venturia pirina which cause apple and pear scab respectively. A conventional synthetic fungicide (penconazole) used within the UK for apple and pear scab control was included for comparison. Little efficacy as scab protectants was demonstrated when each SIR product and penconazole was applied at only two growth stages (bud break, green cluster). However when the above compounds were applied at three or more growth stages efficacy as scab protectants was confirmed. The synthetic fungicide penconazole provided greatest protection against apple and pear scab in both the 2006 and 2007 field trials. There was little difference in the magnitude of scab protection conferred by each SIR agent. Results suggest application of at least three sprays during bud break to early fruitlet formation with an appropriate SIR agent may provide a useful addition to existing methods of apple and pear scab management under field conditions. (C) 2009 Published by Elsevier Ltd.
Resumo:
Lateral epicondylitis (LE) is hypothesized to occur as a result of repetitive, strenuous and abnormal postural activities of the elbow and wrist. There is still a lack of understanding of how wrist and forearm positions contribute to this condition during common manual tasks. In this study the wrist kinematics and the wrist extensors’ musculotendon patterns were investigated during a manual task believed to elicit LE symptoms in susceptible subjects. A 42-year-old right-handed male, with no history of LE, performed a repetitive movement involving pushing and turning a spring-loaded mechanism. Motion capture data were acquired for the upper limb and an inverse kinematic and dynamic analysis was subsequently carried out. Results illustrated the presence of eccentric contractions sustained by the extensor carpi radialis longus (ECRL), together with an almost constant level of tendon strain of both extensor carpi radialis brevis (ECRB) and extensor digitorum communis lateral (EDCL) branch. It is believed that these factors may partly contribute to the onset of LE as they are both responsible for the creation of microtears at the tendons’ origins. The methodology of this study can be used to explore muscle actions during movements that might cause or exacerbate LE.
Resumo:
To maximise the potential benefits to ruminants from sainfoin, plant breeding should focus on developing varieties with predictable condensed tannin (CT) profiles. Little is known about whether and to what extent accession and environment influence sainfoin CT structures. We sought to investigate the likely extent of accession and environment effects on CT characteristics of sainfoin. Four single-flowering (Communis) accessions and two multiple-flowering (Bifera) accessions, grown at three sites and collected at two harvest times were used. Sainfoin CTs were characterised by thiolytic degradation and by high-performance liquid chromatography-gel permeation chromatography (HPLC-GPC). Also, CT concentration measured earlier by the HCl-butanol method was compared with that from thiolysis
Resumo:
Abstract BACKGROUND: To maximise the potential benefits to ruminants from sainfoin, plant breeding should focus on developing varieties with predictable condensed tannin (CT) profiles. Little is known about whether and to what extent accession and environment influence sainfoin CT structures. We sought to investigate the likely extent of accession and environment effects on CT characteristics of sainfoin. Four single-flowering (Communis) accessions and two multiple-flowering (Bifera) accessions, grown at three sites and collected at two harvest times were used. Sainfoin CTs were characterised by thiolytic degradation and by high-performance liquid chromatography-gel permeation chromatography (HPLC-GPC). Also, CT concentration measured earlier by the HCl-butanol method was compared with that from thiolysis. RESULTS: Thiolysis revealed that accession and harvest influenced most CT structural attributes. Bifera CTs eluted as single peaks (Mp < 6220 Da) in HPLC-GPC across the two harvests and two sites, whereas Communis generated two to three CT peaks, which included a peak (Mp ≤ 9066 Da) in the second harvest. A discrepancy was observed in CT concentrations measured by the two methods. CONCLUSION: CTs from Bifera accessions had more stable and predictable characteristics across harvests and sites and this could be of interest when breeding sainfoin. © 2013 Society of Chemical Industry.
Resumo:
The Euphorbiaceae produce a diverse range of diterpenoids, many of which have pharmacological activities. These diterpenoids include ingenol mebutate, which is licensed for the treatment of a precancerous skin condition (actinic keratosis), and phorbol derivatives such as resiniferatoxin and prostratin, which are undergoing investigation for the treatment of severe pain and HIV, respectively. Despite the interest in these diterpenoids, their biosynthesis is poorly understood at present, with the only characterized step being the conversion of geranylgeranyl pyrophosphate into casbene. Here, we report a physical cluster of diterpenoid biosynthetic genes from castor (Ricinus communis), including casbene synthases and cytochrome P450s from the CYP726A subfamily. CYP726A14, CYP726A17, and CYP726A18 were able to catalyze 5-oxidation of casbene, a conserved oxidation step in the biosynthesis of this family of medicinally important diterpenoids. CYP726A16 catalyzed 7,8-epoxidation of 5-keto-casbene and CYP726A15 catalyzed 5-oxidation of neocembrene. Evidence of similar gene clustering was also found in two other Euphorbiaceae, including Euphorbia peplus, the source organism of ingenol mebutate. These results demonstrate conservation of gene clusters at the higher taxonomic level of the plant family and that this phenomenon could prove useful in further elucidating diterpenoid biosynthetic pathways.