14 resultados para Hurricane Wilma

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 17 August 2007, the center of Hurricane Dean passed within 92 km of the mountainous island of Dominica in the West Indies. Despite its distance from the island and its category 1–2 state, Dean brought significant total precipitation exceeding 500 mm and caused numerous landslides. Four rain gauges, a Moderate Resolution Imaging Spectroradiometer (MODIS) image, and 5-min radar scans from Guadeloupe and Martinique are used to determine the storm’s structure and the mountains’ effect on precipitation. The encounter is best described in three phases: (i) an east-northeast dry flow with three isolated drifting cells; (ii) a brief passage of the narrow outer rainband; and (iii) an extended period with south-southeast airflow in a nearly stationary spiral rainband. In this final phase, from 1100 to 2400 UTC, heavy rainfall from the stationary rainband was doubled by orographic enhancement. This enhancement pushed the sloping soils past the landslide threshold. The enhancement was caused by a modified seeder–feeder accretion mechanism that created a “dipole” pattern of precipitation, including a dry zone over the ocean in the lee. In contrast to normal trade-wind conditions, no terrain triggering of convection was identified in the hurricane environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe tropical cyclones (called hurricanes in the North Atlantic and northeast Pacific) can cause loss of human lives and serious economic damage. In his Perspective, Bengtsson charts the current knowledge about how hurricanes form and whether long-term trends can be discerned in the past century or predicted for a future warmer planet. He also discusses the report by Goldenberg et al., who have analyzed hurricane activity in the North Atlantic and the Caribbean over much of the past century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A very high resolution atmospheric general circulation model, T106-L19, has been used for the simulation of hurricanes in a multi-year numerical experiment. Individual storms as well as their geographical and seasonal distribution agree remarkably well with observations. In spite of the fact that only the thermal and dynamical structure of the storms have been used as criteria of their identification, practically all of them occur in areas where the sea surface temperature is higher or equal to 26 °C. There are considerable variations from year to year in the number of storms in spite of the fact that there are no interannual variations in the SST pattern. It is found that the number of storms in particular areas appear to depend on the intensity of the Hadley-Walker cell. The result is clearly resolution-dependant. At lower horizonal resolution, T42, for example, the intensity of the storms is significantly reduced and their overall structure is less realistic, including their vertical form and extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of intense hurricane-type vortices in the ECMWF operational model is reported. These vortices develop around day 4 in the forecast and occur in the tropical belt in areas and at times where intense tropical cyclones normally occur. The frequency resembles that observed over most tropical regions with a pronounced maximum in the western North Pacific. The life time of the vortices and their 3-dimensional structure agree in some fundamental way with observations although, because of the resolution, the systems are less intense than the observed ones. The general large-scale conditions for active and inactive cyclone periods are discussed. The model cyclones are sensitive to the sea-surface temperature and do not develop with sea surface temperatures lower than 28–29°C. The dynamical conditions favouring cyclone development are characterized by intense large-scale divergence in the upper troposphere. Cyclogenesis appears to take place when these conditions are found outside the equatorial zone and over oceans where the water is sufficiently warm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or ‘ad hoc’ goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention – self-affirmation (SA) – that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual–spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive– and social–psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Records of Atlantic basin tropical cyclones (TCs) since the late nineteenth century indicate a very large upward trend in storm frequency. This increase in documented TCs has been previously interpreted as resulting from anthropogenic climate change. However, improvements in observing and recording practices provide an alternative interpretation for these changes: recent studies suggest that the number of potentially missed TCs is sufficient to explain a large part of the recorded increase in TC counts. This study explores the influence of another factor—TC duration—on observed changes in TC frequency, using a widely used Atlantic hurricane database (HURDAT). It is found that the occurrence of short-lived storms (duration of 2 days or less) in the database has increased dramatically, from less than one per year in the late nineteenth–early twentieth century to about five per year since about 2000, while medium- to long-lived storms have increased little, if at all. Thus, the previously documented increase in total TC frequency since the late nineteenth century in the database is primarily due to an increase in very short-lived TCs. The authors also undertake a sampling study based upon the distribution of ship observations, which provides quantitative estimates of the frequency of missed TCs, focusing just on the moderate to long-lived systems with durations exceeding 2 days in the raw HURDAT. Upon adding the estimated numbers of missed TCs, the time series of moderate to long-lived Atlantic TCs show substantial multidecadal variability, but neither time series exhibits a significant trend since the late nineteenth century, with a nominal decrease in the adjusted time series. Thus, to understand the source of the century-scale increase in Atlantic TC counts in HURDAT, one must explain the relatively monotonic increase in very short-duration storms since the late nineteenth century. While it is possible that the recorded increase in short-duration TCs represents a real climate signal, the authors consider that it is more plausible that the increase arises primarily from improvements in the quantity and quality of observations, along with enhanced interpretation techniques. These have allowed National Hurricane Center forecasters to better monitor and detect initial TC formation, and thus incorporate increasing numbers of very short-lived systems into the TC database.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean1. These links are extensive, influencing a range of climate processes such as hurricane activity2 and African Sahel3, 4, 5 and Amazonian5 droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations6, 7, 8, 9, 10. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures11, 12, but climate models have so far failed to reproduce these interactions6, 9 and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860–2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910–1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol–cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol–cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of a high resolution atmospheric model at T106 resolution, for studying the influence of greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al. The sea surface temperature anomalies have been taken from a previous transient climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms, at the time when the CO2 concentration in the atmosphere had doubled, agrees in geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern Hemisphere. The main reason to this, appear to be connected to changes in the large scale circulation, such as a weaker Hadley circulation and stronger upper air westerlies. The low level vorticity in the hurricane genesis regions is generally reduced compared to the present climate, while the vertical tropospheric wind shear is somewhat increased. Most tropical storm regions indicate reduced surface windspeeds and a slightly weaker hydrological cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland. The year 2008 was also characterized by heavy precipitation in a number of regions of northern South America, Africa, and South Asia. In contrast, a prolonged and intense drought occurred during most of 2008 in northern Argentina, Paraguay, Uruguay, and southern Brazil, causing severe impacts to agriculture and affecting many communities. The year began with a strong La Niña episode that ended in June. Eastward surface current anomalies in the tropical Pacific Ocean in early 2008 played a major role in adjusting the basin from strong La Niña conditions to ENSO-neutral conditions by July–August, followed by a return to La Niña conditions late in December. The La Niña conditions resulted in far-reaching anomalies such as a cooling in the central tropical Pacific, Arctic Ocean, and the regions extending from the Gulf of Alaska to the west coast of North America; changes in the sea surface salinity and heat content anomalies in the tropics; and total column water vapor, cloud cover, tropospheric temperature, and precipitation patterns typical of a La Niña. Anomalously salty ocean surface salinity values in climatologically drier locations and anomalously fresh values in rainier locations observed in recent years generally persisted in 2008, suggesting an increase in the hydrological cycle. The 2008 Atlantic hurricane season was the 14th busiest on record and the only season ever recorded with major hurricanes each month from July through November. Conversely, activity in the northwest Pacific was considerably below normal during 2008. While activity in the north Indian Ocean was only slightly above average, the season was punctuated by Cyclone Nargis, which killed over 145,000 people; in addition, it was the seventh-strongest cyclone ever in the basin and the most devastating to hit Asia since 1991. Greenhouse gas concentrations continued to rise, increasing by more than expected based on with CO2 the 1979 to 2007 trend. In the oceans, the global mean uptake for 2007 is estimated to be 1.67 Pg-C, about CO2 0.07 Pg-C lower than the long-term average, making it the third-largest anomaly determined with this method since 1983, with the largest uptake of carbon over the past decade coming from the eastern Indian Ocean. Global phytoplankton chlorophyll concentrations were slightly elevated in 2008 relative to 2007, but regional changes were substantial (ranging to about 50%) and followed long-term patterns of net decreases in chlorophyll with increasing sea surface temperature. Ozone-depleting gas concentrations continued to fall globally to about 4% below the peak levels of the 2000–02 period. Total column ozone concentrations remain well below pre-1980, levels and the 2008 ozone hole was unusually large (sixth worst on record) and persistent, with low ozone values extending into the late December period. In fact the polar vortex in 2008 persisted longer than for any previous year since 1979. Northern Hemisphere snow cover extent for the year was well below average due in large part to the record-low ice extent in March and despite the record-maximum coverage in January and the shortest snow cover duration on record (which started in 1966) in the North American Arctic. Limited preliminary data imply that in 2008 glaciers continued to lose mass, and full data for 2007 show it was the 17th consecutive year of loss. The northern region of Greenland and adjacent areas of Arctic Canada experienced a particularly intense melt season, even though there was an abnormally cold winter across Greenland's southern half. One of the most dramatic signals of the general warming trend was the continued significant reduction in the extent of the summer sea-ice cover and, importantly, the decrease in the amount of relatively older, thicker ice. The extent of the 2008 summer sea-ice cover was the second-lowest value of the satellite record (which started in 1979) and 36% below the 1979–2000 average. Significant losses in the mass of ice sheets and the area of ice shelves continued, with several fjords on the northern coast of Ellesmere Island being ice free for the first time in 3,000–5,500 years. In Antarctica, the positive phase of the SAM led to record-high total sea ice extent for much of early 2008 through enhanced equatorward Ekman transport. With colder continental temperatures at this time, the 2007–08 austral summer snowmelt season was dramatically weakened, making it the second shortest melt season since 1978 (when the record began). There was strong warming and increased precipitation along the Antarctic Peninsula and west Antarctica in 2008, and also pockets of warming along coastal east Antarctica, in concert with continued declines in sea-ice concentration in the Amundsen/Bellingshausen Seas. One significant event indicative of this warming was the disintegration and retreat of the Wilkins Ice Shelf in the southwest peninsula area of Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. CLIVAR (CLImate VARiability and predictability of the ocean-atmosphere system). This work, combined with results from other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate the decrease in tropical cyclone numbers previously shown to be a common response of climate models in a warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Windstorm Kyrill affected large parts of Europe in January 2007 and caused widespread havoc and loss of life. In this study the formation of a secondary cyclone, Kyill II, along the occluded front of the mature cyclone Kyrill and the occurrence of severe wind gusts as Kyrill II passed over Germany are investigated with the help of high-resolution regional climate model simulations. Kyrill underwent an explosive cyclogenesis south of Greenland as the storm crossed polewards of an intense upper-level jet stream. Later in its life cycle secondary cyclogenesis occurred just west of the British Isles. The formation of Kyrill II along the occluded front was associated (a) with frontolytic strain and (b) with strong diabatic heating in combination with a developing upper-level shortwave trough. Sensitivity studies with reduced latent heat release feature a similar development but a weaker secondary cyclone, revealing the importance of diabatic processes during the formation of Kyrill II. Kyrill II moved further towards Europe and its development was favored by a split jet structure aloft, which maintained the cyclone’s exceptionally deep core pressure (below 965 hPa) for at least 36 hours. The occurrence of hurricane force winds related to the strong cold front over North and Central Germany is analyzed using convection-permitting simulations. The lower troposphere exhibits conditional instability, a turbulent flow and evaporative cooling. Simulation at high spatio-temporal resolution suggests that the downward mixing of high momentum (the wind speed at 875 hPa widely exceeded 45 m s-1) accounts for widespread severe surface wind gusts, which is in agreement with observed widespread losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the mid-1990s the North Atlantic subpolar gyre warmed rapidly, which had important climate impacts, such as increased hurricane numbers, and changes to rainfall over Africa, Europe and North America. Evidence suggests that the warming was largely due to a strengthening of the ocean circulation, particularly the Atlantic Meridional Overturning Circulation (AMOC). Since the mid-1990s direct and indirect measurements have suggested a decline in the strength of the ocean circulation, which is expected to lead to a reduction in northward heat transport. Here we show that since 2005 a large volume of the upper North Atlantic Ocean has cooled significantly by approximately -0.45C or 1.5x10^22 J, reversing the previous warming trend. By analysing observations and a state-of-the-art climate model, we show that this cooling is consistent with a reduction in the strength of the ocean circulation and heat transport, linked to record low densities in the deep Labrador Sea. The low density in the deep Labrador Sea is primarily due to deep ocean warming since 1995, but a long-term freshening also played a role. The observed upper ocean cooling since 2005 is not consistent with the hypothesis that anthropogenic aerosols directly drive Atlantic temperatures.