9 resultados para Human Error
em CentAUR: Central Archive University of Reading - UK
Resumo:
Very large scale scheduling and planning tasks cannot be effectively addressed by fully automated schedule optimisation systems, since many key factors which govern 'fitness' in such cases are unformalisable. This raises the question of an interactive (or collaborative) approach, where fitness is assigned by the expert user. Though well-researched in the domains of interactively evolved art and music, this method is as yet rarely used in logistics. This paper concerns a difficulty shared by all interactive evolutionary systems (IESs), but especially those used for logistics or design problems. The difficulty is that objective evaluation of IESs is severely hampered by the need for expert humans in the loop. This makes it effectively impossible to, for example, determine with statistical confidence any ranking among a decent number of configurations for the parameters and strategy choices. We make headway into this difficulty with an Automated Tester (AT) for such systems. The AT replaces the human in experiments, and has parameters controlling its decision-making accuracy (modelling human error) and a built-in notion of a target solution which may typically be at odds with the solution which is optimal in terms of formalisable fitness. Using the AT, plausible evaluations of alternative designs for the IES can be done, allowing for (and examining the effects of) different levels of user error. We describe such an AT for evaluating an IES for very large scale planning.
Resumo:
This study has explored the underlying causes of preventable drug-related admissions to hospital, from primary care through semi-structured interviews and review of patients’ medical records. Analysis of the data has revealed that communication failures between different groups of healthcare professionals and between healthcare professionals and patients contribute to preventable drug-related admissions, as do knowledge gaps about medication in both healthcare professionals and patients. In addition, working conditions for community pharmacists severely limit their ability to effectively act as a safety barrier to patients receiving inappropriate medication. Limitations include heavy workloads, lack of access to patients’ clinical information, poor relationships with general practitioners and time restrictions. The results of this study represent an important addition to our understanding of the contribution of human error as an underlying cause of preventable drug-related morbidity, and the factors which contribute to errors occurring in the primary healthcare setting.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
In recent years there has been a rapid growth of interest in exploring the relationship between nutritional therapies and the maintenance of cognitive function in adulthood. Emerging evidence reveals an increasingly complex picture with respect to the benefits of various food constituents on learning, memory and psychomotor function in adults. However, to date, there has been little consensus in human studies on the range of cognitive domains to be tested or the particular tests to be employed. To illustrate the potential difficulties that this poses, we conducted a systematic review of existing human adult randomised controlled trial (RCT) studies that have investigated the effects of 24 d to 36 months of supplementation with flavonoids and micronutrients on cognitive performance. There were thirty-nine studies employing a total of 121 different cognitive tasks that met the criteria for inclusion. Results showed that less than half of these studies reported positive effects of treatment, with some important cognitive domains either under-represented or not explored at all. Although there was some evidence of sensitivity to nutritional supplementation in a number of domains (for example, executive function, spatial working memory), interpretation is currently difficult given the prevailing 'scattergun approach' for selecting cognitive tests. Specifically, the practice means that it is often difficult to distinguish between a boundary condition for a particular nutrient and a lack of task sensitivity. We argue that for significant future progress to be made, researchers need to pay much closer attention to existing human RCT and animal data, as well as to more basic issues surrounding task sensitivity, statistical power and type I error.
Resumo:
In terms of evolution, the strategy of catching prey would have been an important part of survival in a constantly changing environment. A prediction mechanism would have developed to compensate for any delay in the sensory-motor system. In a previous study, “proactive control” was found, in which the motion of the hands preceded the virtual moving target. These results implied that the positive phase shift of the hand motion represents the proactive nature of the visual-motor control system, which attempts to minimize the brief error in the hand motion when the target changes position unexpectedly. In our study, a visual target moves in circle (13 cm diameter) on a computer screen, and each subject is asked to keep track of the target’s motion by the motion of a cursor. As the frequency of the target increases, a rhythmic component was found in the velocity of the cursor in spite of the fact that the velocity of the target was constant. The generation of a rhythmic component cannot be explained simply as a feedback mechanism for the phase shifts of the target and cursor in a sensory-motor system. Therefore, it implies that the rhythmic component was generated to predict the velocity of the target, which is a feed-forward mechanism in the sensory-motor system. Here, we discuss the generation of the rhythmic component and its roll in the feed-forward mechanism.
Resumo:
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Resumo:
Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.