2 resultados para Human Blink Reflex

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink. However, if T2 immediately follows T1, performance is often reported being as good as that at long lags-the so-called Lag-1 sparing effect. Two experiments investigated the mechanisms underlying this effect. Experiment 1 showed that, at Lag 1, requiring subjects to correctly report both identity and temporal order of targets produces relatively good performance on T2 but relatively bad performance on T1. Experiment 2 confirmed that subjects often confuse target order at short lags, especially if the two targets are equally easy to discriminate. Results suggest that, if two targets appear in close succession, they compete for attentional resources. If the two competitors are of unequal strength the stronger one is more likely to win and be reported at the expense of the other. If the two are equally strong, however, they will often be integrated into the same attentional episode and thus get both access to attentional resources. But this comes with a cost, as it eliminates information about the targets' temporal order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel Neuropredictive Teleoperation (NPT) Scheme is presented. The design results from two key ideas: the exploitation of the measured or estimated neural input to the human arm or its electromyograph (EMG) as the system input and the employment of a predictor of the arm movement, based on this neural signal and an arm model, to compensate for time delays in the system. Although a multitude of such models, as well as measuring devices for the neural signals and the EMG, have been proposed, current telemanipulator research has only been considering highly simplified arm models. In the present design, the bilateral constraint that the master and slave are simultaneously compliant to each other's state (equal positions and forces) is abandoned, thus obtaining a simple to analyzesuccession of only locally controlled modules, and a robustness to time delays of up to 500 ms. The proposed designs were inspired by well established physiological evidence that the brain, rather than controlling the movement on-line, programs the arm with an action plan of a complete movement, which is then executed largely in open loop, regulated only by local reflex loops. As a model of the human arm the well-established Stark model is employed, whose mathematical representation is modified to make it suitable for an engineering application. The proposed scheme is however valid for any arm model. BIBO-stability and passivity results for a variety of local control laws are reported. Simulation results and comparisons with traditional designs also highlight the advantages of the proposed design.